
Small Logo

Medium Logo

Large Logo

Application Note

Migrating Applications from
Dialogic® NaturalAccess™
PacketMedia™ Host Media
Processing Software to
Dialogic® PowerMedia™ Host
Media Processing Software

Executive Summary
This application note provides guidelines for migrating existing applications from Dialogic® NaturalAccess™

PacketMedia™ Host Media Processing Software Release 2.0 for Windows® (Dialogic PacketMedia HMP Software 2.0)

to Dialogic® PowerMedia™ Host Media Processing Software (PowerMedia HMP). It provides a brief overview of the

PowerMedia HMP APIs used to build applications, shows PowerMedia HMP call flows, and provides tables that map

Dialogic® NaturalAccess™ Software (NaturalAccess Software) to PowerMedia HMP functions, events, and call states.

Also, application developers will find two demonstration applications that can be downloaded and used to compare

the call flows between NaturalAccess Software and PowerMedia HMP. The demos allow the application developer to

place a call, play audio from a file, record audio to a file, and disconnect a call.

Note: Dialogic® Host Media Processing Software has joined the Dialogic® PowerMedia™ Media Processing Product

Family and is now known as Dialogic® PowerMedia™ Host Media Processing Software (PowerMedia HMP).

Application NoteMigrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application NoteMigrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Table of Contents
Introduction . 2

Overview . 2

Dialogic® PowerMedia™ Host Media Processing Software APIs . 3

Dialogic® PowerMedia™ Host Media Processing Software HMP Documentation 4

Installing and Configuring Dialogic® PowerMedia™ Host Media Processing Software 5

Using the Dialogic® Standard Runtime Library for Event Processing . 5

Selecting a Call Control Model . 6

Using the Dialogic® Global Call API for Call Processing . 7

Initializing the Dialogic® Global Call API Library . 8

Opening a Dialogic® Global Call API Device . 9

Receiving an Inbound Call . 11

Placing an Outbound Call . 11

Tearing Down a Call . 12

Managing SIP Message Content . 13

Controlling SIP Media Negotiation . 14

Controlling the Media Stream . 17

Dialogic® NaturalAccess™ Software API to Dialogic® Global Call API Mappings 17

Function Mapping . 18

Event Mapping . 19

Call State Mapping . 20

Running the SIP Demonstration Applications . 20

Running the Dialogic® NaturalAccess™ Software Based siphmpdemo Application 20

Running the Dialogic® PowerMedia™ Host Media Processing Software Based

siphmpdemo Application . 22

For More Information . 25

1

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

2

Introduction

Application developers wanting to migrate their existing applications from Dialogic® NaturalAccess™ PacketMedia™ Host Media
Processing Software Release 2.0 (Dialogic PacketMedia HMP Software 2.0) to Dialogic® PowerMedia™ Host Media Processing
Software (PowerMedia HMP) will find the guidelines, samples, and demos provided in this application note useful.

An understanding of Dialogic APIs is beneficial when migrating, and this application note provides tables that map Dialogic®
NaturalAccess™ Software (NaturalAccess Software) to PowerMedia HMP functions, events, and call states. The appropriate
documentation is referenced throughout to further support the application developer’s efforts.

Other areas discussed include determining which Dialogic® Standard Runtime Library to use, selecting a call control model, and
using Dialogic® Global Call API for call processing.

Two demonstration applications (see “For More Information” for the web links to the downloads) are referenced that application
developers can run to compare the call flows between NaturalAccess Software and PowerMedia HMP, allowing them to place a
call, play audio from a file, record audio to a file, and disconnect a call.

Overview

PowerMedia HMP provides services for building flexible, scalable, and cost-effective IP and 3G-324M multimedia platforms. The
software provides these services on general-purpose servers without requiring the use of specialized hardware.

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

3

Dialogic® PowerMedia™ Host Media Processing Software APIs

PowerMedia HMP applications can be written using the Dialogic APIs described in Table 1. To use one of these APIs as part of an
application, include the appropriate library and header file.

Dialogic® APIs Description Library/Header Files

Conferencing API Controls conferencing Cnflib.h
Cnferrs.h
Cnfevts.h

Libcnf.lib

Continuous Speech Processing API Allows for the integration of enhanced speech processing algorithms Eclib.h

Libecmt.lib

Device Management API Allows for the interconnection of devices along the CTBus or Packet Bus Devmgmt.h

Libdevmgmt.lib

Fax API Controls fax processing Faxlib.h

Libfaxmt.lib

Global Call API Establishes calls and manages call states

Can be run in two modes: First Party Call Control (1PCC) mode and Third Party Call
Control (3PCC) mode

gclib.h
gcerr.h
gcip.h
gcip_defs.h
gcipmlib.h

libgc.lib

IP Media Library API Controls the RTP stream when running in 3PCC mode or using a non-Dialogic SIP stack Ipmlib.h
Ipmerror.h

Standard Runtime Library (SRL) Retrieves and manages asynchronous events and timeouts srllib.h
libsrlmt.lib

Voice Library Processes media, including playing, recording, dialing, and DTMF processing dxxxlib.h

libdxxmt.lib

Table 1. Dialogic® APIs for Applications Deployed with Dialogic® PowerMedia™ Host Media Processing Software

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

4

Dialogic® PowerMedia™ Host Media Processing Software HMP Documentation

PowerMedia HMP releases have associated sets of manuals, including the following:

Dialogic® Host Media Processing Software Installation Guide — Explains how to install PowerMedia HMP and update an existing
software version.

Dialogic® Host Media Processing Software Administration Guide (Windows® only) — Describes how to perform the various tasks
related to obtaining and activating Dialogic PowerMedia HMP software license files.

Dialogic® System Configuration Guide — Explains how to configure Dialogic® software, including PowerMedia HMP.

Dialogic® Global Call IP Technology Guide — Provides IP-specific information for the Dialogic® Global Call API.

Dialogic® Host Media Processing API Programming Guides — Provides guidelines for application developers and is useful
material to review before starting detailed implementations.

Note: Most APIs supported by PowerMedia HMP have their own API Programming Guide.

Dialogic® Host Media Processing API Library Reference Manuals — Most Dialogic APIs supported by PowerMedia HMP have
their own API Library Reference Manual, containing information about the functions, data structures, and events used as part of
the API library, and which also shows sample code for the functions.

Dialogic® Host Media Processing Demo Guides — Describes the PowerMedia HMP Software demonstration applications and
provides instructions for running the applications on the Linux and Windows® operating systems.

It is useful to become familiar with the API Programming Guides, API Library Reference Manuals, and the Dialogic® Global Call IP
Technology Guide before planning a migration.

To access PowerMedia HMP documentation:

1.  Navigate to the Documentation section of the Dialogic web site (http://www.dialogic.com/manuals).

2.  On the left side of the page, click the link for the PowerMedia HMP release desired.

3.  In the Programming Libraries section, click the link for the manual desired.

http://www.dialogic.com/manuals/hmp30win/release_install.pdf
http://www.dialogic.com/manuals/hmp30win/license_admin_hmp_win_v2.pdf
http://www.dialogic.com/manuals/docs/config_hmp_win_v1.pdf
http://www.dialogic.com/manuals/docs/globalcall_for_ip_hmp_v10.pdf
http://www.dialogic.com/manuals/hmp30win/default.htm
http://www.dialogic.com/manuals/hmp30win/default.htm
http://www.dialogic.com/manuals/hmp30win/default.htm

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

5

Installing and Configuring Dialogic® PowerMedia™ Host Media Processing Software

To install and configure PowerMedia HMP, including related demonstration programs, do the following:

1.  Download the PowerMedia HMP release from the Dialogic website as follows:

a. Access the “Dialogic® Host Media Processing Software – Evaluating and Licensing” page.

b. In the Current Releases section, click the link for the version to install.

c. In the Current Version section, click the link for the listed service update.

2. � PowerMedia HMP software comes with a one-port evaluation license, but an option to register and download an additional two-
port evaluation license from the “Dialogic Host Media Processing Software – Evaluating and Licensing” page is also available.
To obtain additional evaluation licenses, contact your Dialogic Sales representative.

3.  Follow the instructions for downloading the software.

4.  Install the software, as described in the Dialogic® Host Media Processing Software Installation Guide.

5. � Run the Dialogic® HMP License Manager to activate the PowerMedia HMP license, as described in the Dialogic® Host Media
Processing Software Administration Guide.

6. � Run the Dialogic® Configuration Manager (DCM) to detect the license and start the HMP services, as described in the Dialogic®
Host Media Processing Software Administration Guide.

7. � Validate the configuration by creating and receiving calls using the PowerMedia HMP based siphmpdemo application. For
more information, see “Running the SIP Demonstration Applications” in this application note.

The Dialogic Helpweb has notes on a variety of topics and can be used for troubleshooting or research related to PowerMedia
HMP installation, and for other procedures.

Using the Dialogic® Standard Runtime Library for Event Processing

The Dialogic® Standard Runtime Library (SRL) retrieves and processes application events for PowerMedia HMP libraries.

When migrating applications from Dialogic PacketMedia HMP Software 2.0 to PowerMedia HMP, first decide which SRL
programming model to use. As of the publication of this application note, PowerMedia HMP supports the following programming
models:

• � Single threaded polled model (asynchronous)

• � Multithreaded polled model (asynchronous)

• � Callback model (asynchronous)

• � Multithreaded synchronous model

For more information about these programming models, see the Dialogic® Standard Runtime Library API Programming Guide.

http://www.dialogic.com/products/ip_enabled/download/hmp_download.htm
http://www.dialogic.com/support/helpweb/hmp/

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

6

Selecting one of the polled models can provide a better match for call control applications, and are also more similar to the
NaturalAccess Software runtime model than the other SRL programming models.

In the polled models, the sr_waitevt() function works like the NaturalAccess Software ctaWaitEvent() function, waiting for and
retrieving events and timeouts. The application can process these received events upon receipt. The SRL creates the needed
event queues at application startup, removing the need to call a function like ctaCreateQueue(). However, open the device with
the library-specific open function in order to obtain the device handle.

During the migration process, use SRL sr_putevt() to place a user-defined event onto the SRL event queue. This can be helpful
for generating events that map into the existing architecture.

Table 2 shows the function mapping between NaturalAccess Software APIs and the SRL API.

NaturalAccess Software API Functions Standard Runtime Library API Functions

ctaCreateQueue Not Applicable

ctaWaitEvent sr_waitevt

Not Applicable sr_putevt

Table 2. Function Mapping between the Dialogic® NaturalAccess™ Software APIs and the Dialogic® Standard Runtime Library API

For more information about the SRL, refer to the Dialogic® Standard Runtime Library API Programming Guide and the Dialogic®
Standard Runtime Library API Library Reference.

Selecting a Call Control Model

Use one of the following models for implementing IP call control with PowerMedia HMP:

• � Dialogic® SIP stack controlled by the Dialogic® Global Call API in 1PCC operating mode

• � Dialogic SIP stack controlled by the Global Call API in 3PCC operating mode

• � Non-Dialogic SIP stack

Each of these call control models has benefits, but the Global Call API abstracts protocol-specific functions, meaning that an
application created with this API does not have to manually walk through the protocol, and instead, just handles call states.

The Global Call API is similar to the Dialogic® NaturalAccess™ SIP for NaturalCallControl™ API (NaturalAccess SIP for NCC API) in
that both are high-level APIs, and both have similar machine states and event schemes. However, an application using the Global
Call API in 3PCC mode is responsible for creating the Session Description Protocol (SDP) and manually attaching it to the SIP
messages. (The SDP is automatically created and attached to SIP messages in the NaturalAccess SIP for NCC API and the Global
Call API in 1PCC operating mode.)

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

7

Figure 1 shows an example of a typical function, event, and SIP message sequence for a call running in Global Call API 3PCC
mode using the Dialogic® IP Media Library API for media control.

Figure 1. Typical Call Flow for a Call Running in Dialogic® Global Call API 3PCC Operating Mode

Using the Dialogic® Global Call API for Call Processing

This section describes how to use the Global Call API for establishing and controlling calls. The Global Call API implementation
is similar for both the 1PCC and 3PCC operating modes. The main difference lies with negotiating media and controlling RTP
streaming.

IPML
Library A

IPML
Library B

Application
A

Application
B

Dialogic®
Global Call

API Library A
(IPCCLIB)

Global
Call API
Library B
(IPCCLIB)

SDP offer has only one receive
coder specified, allowing IPML to
"start early" on the offering side.

SDP added by the application
in a provisional response will
be automatically included in
the dialog's final response.

The SDP will only be delivered
to the application one time.

No GCEV_SIP_200OK
events are sent to the

application during dialog
dis-establishment.

ipm_StartMedia
(RCV_ONLY)

gc_MakeCall
SDP Offer 1

GCEV_OFFERED
SDP Offer 1

gc_SetUserInfo
SDP Answer 1

INVITE
SDP Offer 1

180 Ringing
SDP Answer 1

200 OK
SDP Answer 1

200 OK
No SDP

ipm_StartMedia (TxRx)

ipm_Stop

IPMEV_STOP

IPMEV_START_MEDIA

RTP

RTP

ACK

BYE

gc_AcceptCall

gc_AnswerCall

GCEV_ACCEPT

GCEV_ALERTING
SDP Answer 1

GCEV_CONNECTED

GCEV
_DISCONNECTED

GCEV_SIP_200OK

GCEV_SIP_ACK_OK

GCEV_SIP_ACK

GCEV_DROPCALL

GCEV_DROPCALL

GCEV_ANSWERED

gc_ReleaseCallEx

gc_ReleaseCallEx

GCEV
_RELEASECALL

GCEV
_RELEASECALL

gc_DropCall

gc_SipAck

gc_DropCall

GCEV_DIALING

ipm_ModifyMedia
(TxRx)

IPMEV_MODIFY
_MEDIA

IPMEV_START
_MEDIA

ipm_Stop

IPMEV_STOP

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

8

For more information about the Global Call API, see the following manuals:

• � Dialogic ® Global Call API Programming Guide

• � Dialogic ® Global Call API Library Reference

• � Dialogic® Global Call IP Technology Guide

Initializing the Dialogic® Global Call API Library

Before using Global Call API functions, the application must start the Global Call API library. To start the Global Call API library,
initialize Global Call_START_STRUCT and call gc_Start(), as described in the Dialogic® Global Call API Programming Guide.
gc_Start() maps to ctaCreateQueue() in the NaturalAccess Software API.

The configuration created by gc_Start() goes inside the IP_VIRTBOARD structure, which is the structure that initializes the
Dialogic SIP stack. The fields in IP_VIRTBOARD control configuration and capability information, such as the SIP signaling port,
number of initialized channels, and the maximum number of Internet Protocol Telephony (IPT) devices that can be used for SIP
calls. IP_VIRTBOARD also can be set to specify whether it is running in 1PCC or 3PCC mode and whether the application has
access to SIP message information.

For more information, see the Dialogic® Global Call IP Technology Guide.

The following example shows how to initialize an IP_VIRTBOARD structure. This example configures the virtual board to run on
the default SIP signaling port (5060) and specifies 3PCC as the operating mode:

int startGlobalCall(int a _ maxCalls)
{
char						 str[MAX _ STRING _ SIZE];

		 GC _ START _ STRUCT gclib _ start;
		 IPCCLIB _ START _ DATA cclibStartData;
		 IP _ VIRTBOARD virtBoards[1];

		 memset(&cclibStartData,0,sizeof(IPCCLIB _ START _ DATA));
		 memset(virtBoards,0,sizeof(IP _ VIRTBOARD));

		 INIT _ IP _ VIRTBOARD(virtBoards);

		 virtBoards[0].total _ max _ calls = a _ maxCalls;
		 virtBoards[0].h323 _ max _ calls = IP _ CFG _ NO _ CALLS;
		 virtBoards[0].sip _ max _ calls = a _ maxCalls;
		 virtBoards[0].sip _ signaling _ port = 5060;
		 virtBoards[0].sup _ serv _ mask = IP _ SUP _ SERV _ CALL _ XFER;
		� virtBoards[0].sip _ msginfo _ mask = IP _ SIP _ MSGINFO _ ENABLE|IP _ SIP _

MIME _ ENABLE;

		 INIT _ IPCCLIB _ START _ DATA(&cclibStartData, 1, virtBoards);
//3PCC
		 if(m _ 3pccMode)

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

9

		 {
			� cclibStartData.max _ parm _ data _ size = IP _ CFG _ PARM _ DATA _

MAXLEN;
			� cclibStartData.media _ operational _ mode = MEDIA _ OPERATIONAL _

MODE _ 3PCC;
		 }

		 CCLIB _ START _ STRUCT cclib _ start[]={
							 {“GC _ H3R _ LIB”, &cclibStartData},
							 {“GC _ IPM _ LIB”, NULL},
							 {“GC _ DM3CC _ LIB”, NULL}};
		 gclib _ start.num _ cclibs = 3;
		 gclib _ start.cclib _ list = cclib _ start;
		 if(gc _ Start(&gclib _ start) == -1)
		 {
			 sprintf(str, “ERROR in GCSTART”);
			 printandlog(ALL _ DEVICES, GC _ APIERR, NULL, str, 0);
				 return -1;
		 }
	 printandlog(ALL _ DEVICES, GC _ APICALL, NULL, “GC _ START SUCCESSFULL”, 0);
	 return 0;
}

Opening a Dialogic® Global Call API Device

The Global Call API opens a device that is a collection of other devices. For example, the opened device might include a voice
component for playing and recording, an IPT device used for IP call control, and an IP media device used for IP media RTP
streaming. All of these devices combine to form one logical cluster or “channel.”

Use gc_OpenEx() to open a Global Call API device and obtain the line device handle. Because Global Call API supports many
different protocols, it is useful to specify the protocol to run on this channel. This information is passed to the function via the
Open string.

Note: To obtain a handle to an underlying component of a Global Call API device, use gc_GetResourceH().

The following example shows a typical open string for a 1PCC implementation.

“:P_SIP:N_iptB1T1:M_ipmB1C1:V_dxxxB1C1”

This string opens call control channel 1 (iptB1T1), media device channel 1 (ipmB1C1), and voice channel 1 (dxxxB1C1), and it
associates these channels with the same cluster.

For a 3PCC implementation, the protocol and the network device (“:P_SIP:N_iptB1T1”) only are commonly used. The media
device opens separately via ipm_Open().

gc_Open() takes a user context pointer, which is included with an event delivered to the application. It is useful for storing pointers
to classes or application-specific data to speed up the processing of events later on. After calling gc_Open(), the application
should wait for a GCEV_OPEN event and a GCEV_UNBLOCKED event before proceeding.

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

10

The following example shows an open event that supports both 1PCC and 3PCC operating modes:

static void gc _ demo _ open _ SIP _ channel(int index)
{
	 char str[MAX _ STRING _ SIZE];
	 char ipmname[15];
	
	 printandlog(index, MISC, NULL, “SIP device being opened”, 0);

	 // dev name set elseware but can be set here via the index
	 if(g _ 3pccMode){
		 sprintf(port[index].devname, “P _ SIP:N _ iptB1T%d”,index);
	 }
	 else{
		� sprintf(port[index].devname, “P _ SIP:N _ iptB1T%d:M _ ipmB1C%d”,index,

index);
	 }
	 if (gc _ OpenEx(&port[index].ldev, port[index].devname, EV _ ASYNC, (void
		 *)&port[index]) != GC _ SUCCESS) {
		 sprintf(str, “gc _ OpenEx(devicename=%s, mode=EV _ ASYNC) Failed”,
		 port[index].devname);
		 printandlog(index, GC _ APIERR, NULL, str, 0);
		 exitdemo(1);
	 }
	
	 sprintf(str, “gc _ OpenEx(devicename=%s, mode=EV _ ASYNC) Success”,
	 port[index].devname);
	 printandlog(index, GC _ APICALL, NULL, str, 0);
	
	 if(g _ 3pccMode){
		 printandlog(index, MISC, NULL, “IPM device being opened”, 0);
	
		 sprintf(ipmname,”%s”,port[index].medianame);
	
		 if ((port[index].mediah=ipm _ Open(ipmname, NULL ,EV _ ASYNC))== -1) {
			 sprintf(str, “ipm _ open(devicename=%s) Failed”, ipmname);
			 printandlog(index, GC _ APIERR, NULL, str, 0);
			 exitdemo(1);
		 }
		
		 sprintf(str, “ipm _ Open(devicename=%s) Success, mediah=%d”,
		 ipmname,port[index].mediah);
		 printandlog(index, GC _ APICALL, NULL, str, 0);
	 }
}

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

11

Receiving an Inbound Call

To receive an inbound call with the Global Call API, use gc_WaitCall() to place the channel in a waitcall state. The application will
receive a GCEV_OFFERED event when an inbound call arrives. gc_WaitCall() maps to nccStartProtocol() in the NaturalAccess
SIP for NCC API.

Figure 2 shows a typical function, event, and SIP message sequence for receiving an inbound call with the Global Call API.

Figure 2. Receiving an Inbound Call with the Dialgoic® Global Call API

For more information about receiving an inbound call with the Global Call API, see the Dialogic® Global Call IP Technology Guide
and Dialogic® Global Call Programming Guide.

Placing an Outbound Call

To place an outbound call with the Global Call API, use gc_MakeCall(). This function maps to nccPlaceCall() in the NaturalAccess
SIP for NCC API.

Application
Dialogic® Global

Call API
Network

gc_WaitCall

gc_AnswerCall

gc_AcceptCall

SIP:100 (Trying)

SIP:100 (Ringing)

SIP:200 (OK)

gc_CallAck
(GCACK_SERVICE_PROC)

SIP:INVITE

SIP:ACK

GCEV_DETECTED

GCEV_ACCEPT

GCEV_ANSWERED

GCEV_OFFERED

GCEV_CALLPROC

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

12

Figure 3 shows a typical function, event, and SIP message sequence for placing an outbound call with the Global Call API.

Figure 3. Placing an Outbound Call with the Dialogic® Global Call API

For more information about placing an outbound call with the Global Call API, see the Dialogic® Global Call IP Technology Guide
and the Dialogic® Global Call API Programming Guide.

Tearing Down a Call

To tear down a call with the Global Call API, use gc_DropCall() and gc_Releasecall(). gc_DropCall() maps to nccDisconnectCall()
in the NaturalAccess SIP for NCC API, and gc_Releasecall() maps to nccReleaseCall().

Figure 4 shows a typical function, event, and SIP message sequence for a call teardown initiated by the application.

Figure 4. Typical Call Teardown Initiated by the Application

Application Dialogic® Global
Call API

Network

gc_MakeCall

SIP:100 (Trying)

SIP:INVITE

SIP:ACK

SIP:180 (Ringing)

SIP:200 (OK)

GCEV_DIALING

GCEV_PROCEEDING

GCEV_ALERTING

GCEV_CONNECTED

Application Dialogic® Global
Call API

Network

gc_DropCall

gc_ReleaseCallEx

SIP:BYE

SIP:200 (OK)

GCEV_DROPCALL

GCEV_RELEASECALL

Call connected and media streaming established

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

13

Figure 5 shows a typical function, event, and SIP message sequence for a call teardown initiated by the remote end.

Figure 5. Typical Call Teardown Initiated by the Remote End

For more information about tearing down a call with the Global Call API, see the Dialogic® Global Call IP Technology Guide and
Dialogic® Global Call API Programing Guide.

Managing SIP Message Content

It is often desirable to modify the SIP packet contents in order to interface with devices on the SIP network. Doing so includes
changing the default SIP headers and/or changing the SDP information.

In both the 1PCC and 3PCC operating modes, the Global Call API library uses default values for each of the headers. These values
are stored inside the Global Call API library and need to be modified using gc_util_insert_parm_ref_ex. For more information, see
the Dialogic® Global Call IP Technology Guide.

The following example shows how to override the default CONTACT field in the SIP header and set it to Global CallBCM with the
local number:

int SetContact(struct channel *pline,long l _ crn, char *l _ contact = NULL){
	 char						 str[MAX _ STRING _ SIZE];
	 char contact[120] ;
	 char *contact1;
	 GC _ PARM _ BLKP pParmBlock = NULL;

	 if(l _ contact == NULL){
		 sprintf(contact,”Contact: \”GCBCM\” <%s>”,pline->destination _ num);
		 contact1=contact;
	 } else{

Application Dialogic® Global
Call API

Network

gc_DropCall

gc_ReleaseCallEx

SIP:BYE

SIP:200 (OK)

GCEV_DISCONNECTED

GCEV_DROPCALL

GCEV_RELEASECALL

Call connected and media streaming established

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

14

		 contact1 = l _ contact;
	 }

	 sprintf(str,”Setting contact to -> %s\n”,contact1);
	 printandlog(pline->index, MISC, NULL, str, 0);
		
		
	 gc _ util _ insert _ parm _ ref _ ex(&pParmBlock,
			 IPSET _ SIP _ MSGINFO,
			 IPPARM _ SIP _ HDR,
			 (unsigned long) (strlen(contact1)+1),
			 contact1);

	 if(pParmBlock == NULL){
		 sprintf(str,”Error allocating pParmBlock from
		 gc _ util _ insert _ parm _ ref _ ex\n”);
		 printandlog(pline->index, GC _ APIERR, NULL, str, 0);			
		 return GC _ ERROR;
	 }
	� int frc = gc _ SetUserInfo(GCTGT _ GCLIB _ CRN,l _ crn,pParmBlock,GC _

SINGLECALL);
	 if(GC _ SUCCESS != frc)
	 {
		 sprintf(str,”Error setting gc _ SetUserInfo\n”);
		 printandlog(pline->index, GC _ APIERR, NULL, str, 0);
		 gc _ util _ delete _ parm _ blk(pParmBlock);
		 return GC _ ERROR;
	 }
		 gc _ util _ delete _ parm _ blk(pParmBlock);
		 return GC _ SUCCESS;
}

Controlling SIP Media Negotiation

When running in 1PCC operating mode, the SDP is automatically inserted inside the appropriate SIP messages. Use gc_util_insert_
parm_val to insert parameters that enable coder support, RFC 2833 enablement, and other functionality. For more information,
see the Dialogic® Global Call IP Technology Guide.

The following example enables RFC 2833 digit negotiation.

//3pcc
// In 3pcc mode this is done manually
if(!g _ 3pccMode){
	� gc _ util _ insert _ parm _ val(&parmblkp, IPSET _ DTMF, IPPARM _ SUPPORT _

DTMF _ BITMASK,
		 sizeof(char), IP _ DTMF _ TYPE _ RFC _ 2833);
	

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

15

	� if (gc _ SetUserInfo(GCTGT _ GCLIB _ CHAN, port[index].ldev, parmblkp, GC _
ALLCALLS) !=

		 GC _ SUCCESS) {
		� sprintf(str, “gc _ SetUserInfo(linedev=%ld) Failed configuring DTMF

mode”,
		 port[index].ldev);
		 printandlog(index, GC _ APIERR, NULL, str, 0);
		 exitdemo(1);
	 }
sprintf(str, “gc _ SetUserInfo(linedev=%ld) Success - DTMF mode is RFC2833”,
port[index].ldev);
printandlog(index, GC _ APICALL, NULL, str, 0);
gc _ util _ delete _ parm _ blk(parmblkp);
}

When running in the 3PCC operating mode, the SDP is not generated by the Global Call API library and must be manually built
by the application. Sample code for building the SDP is available with the PowerMedia HMP download (available in the SDPAPI
demo in the \dialogic\demos\sdpapi directory).

The following example uses the SDP library to generate the SDP that will be delivered in response to a SIP INVITE:

.

.

. GCEV _ OFFERED Event processing here

//3pcc
if(g _ 3pccMode){
	 // Use the sdpapi to build an SDP, using the media types, ports
	 // and IP address extracted from the SDP that came with the INVITE
	 offerSDP.clear();
	 BuildOfferSDP(&offerSDP, pline->index);
	 if (offerSDP.exportSDP(sdp, 1024, false) == 0) {
			� printandlog(index, MISC, NULL, “Export of Offer SDP

successful\n”,
			 0);
	 } else {
		 printandlog(index, MISC, NULL, “ERROR building Offer SDP \n”, 0);
	 }
	 // Add 1 to strlen for null termination
	 len = strlen(sdp) + 1;

	 // �Note that the “ex” version is used here to handle potentially long
parameter (SDP)
if (gc _ util _ insert _ parm _ ref _ ex(&parmblkp, IPSET _ SDP,IPPARM _ SDP _
OFFER, len,

			 sdp) == -1)
	 {

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

16

		� sprintf(str, “gc _ util _ insert _ parm _ ref _ ex() Failed”, pline->ldev,
pline-

		 >destination _ num);
		 printandlog(index, GC _ APIERR, NULL, str, 0);
		 }

	� if(gc _ SetUserInfo(GCTGT _ GCLIB _ CHAN, pline->ldev,parmblkp , GC _ NEXT _
OUTBOUND _ MSG)

		 == -1)
	 {
		 sprintf(str, “gc _ SetUserInfo(SDP) Failed”, pline->call[callindex].crn);
		 printandlog(index, GC _ APIERR, NULL, str, 0);
	 }
}
if (gc _ AnswerCall(pline->call[callindex].crn, 0, EV _ ASYNC) != GC _ SUCCESS) {
		� sprintf(str, “gc _ AnswerCall(crn=0x%lx, # of rings=0, mode=EV _ ASYNC)

Failed”,
		 pline->call[callindex].crn);
		 printandlog(index, GC _ APIERR, NULL, str, 0);
		 exitdemo(1);
}
sprintf(str, “gc _ AnswerCall(crn=0x%lx, mode=EV _ ASYNC) Success”, pline-
>call[callindex].crn);
printandlog(index, GC _ APICALL, NULL, str, 0);
.
.
.

Where the BuildOfferSDP has the following syntax:

void BuildOfferSDP(sdpSessionDescription *sdp, int index)
{

	 sdp->version()->setVersion(“0”);

	 sdp->origin()->setUserName(“3PCC _ GCBC”);
	 sdp->origin()->setSessionId(“1234”);
	 sdp->origin()->setVersion(“5678”);
	 sdp->origin()->setNetworkType(“IN”);
	 sdp->origin()->setAddressType(“IP4”);
	 sdp->origin()->setAddress(port[index].LocalIpAddr);

	 sdp->sessionName()->setName(“Dialogic _ SIP _ CCLIB”);
	 sdp->sessionInformation()->setInfo(“3PCC _ GCBC Session Info”);

	 sdp->connection()->setNetworkType(“IN”);
	 sdp->connection()->setAddressType(“IP4”);

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

17

	 sdp->connection()->setAddress(port[index].LocalIpAddr);

	 sdpTimeDescription* pTD=sdp->timeDescriptionList()->addItem();
	 unsigned long Start = 0;
	 unsigned long Stop = 0;
	 pTD->time()->setStart(Start);
	 pTD->time()->setStop(Stop);

	 sdpAttribute* pAttribute = sdp->attributeList()->addItem();
	 sdpMediaDescription* pMD=sdp->mediaDescriptionList()->addItem();

	 pMD->media()->setMedia(“audio”);
	 pMD->media()->setPort(49150 + (index*2));
	 pMD->media()->setTransport(“RTP/AVP”);
	 pMD->media()->setNumPorts(1);

	 // Need to parse the coder list and add here
	 for(int i=0;i<port[index].num _ codecs;i++){
		 pMD->media()->addFormat(codeToFormat(port[index].ipcap[i].capability));
}
// If RFC 2833
	 pMD->media()->addFormat(“101”);
	
	 sdpAttributeList* pAttributeList = pMD->attributeList();
		 for(i=0;i<port[index].num _ codecs;i++){
			 setMediaAttributes(&port[index].ipcap[i], pAttributeList);
		 }

		 //If RFC2833
	 pAttribute = pAttributeList->addItem();
	 pAttribute->setProperty(“rtpmap”);
	 pAttribute->setPropertyValue(“101 telephone-event/8000”);
}

Controlling the Media Stream

The RTP media stream is started after a call is connected as follows:

• � �In the 1PCC operating mode, the RTP media stream is started automatically by the Global Call API Libraries.

• � �In the 3PCC operating mode, the application uses the IP Media Library API to start the media stream. This API uses the
device handle obtained by the ipm_Open, instead of the Global Call API device handle. It is desirable to parse the SIP
messages to see which of the SDP members was successfully negotiated.

For more information about the IP Media Library API, see the Dialogic® IP Media Library API Programming and Library Reference.

Dialogic® NaturalAccess™ Software API to Dialogic® Global Call API Mappings

This section maps NaturalAccess Software API functions, events, and call states to the corresponding Global Call API functions,
events, and call states.

http://www.dialogic.com/manuals/docs/ip_media_api_hmp_v16.pdf

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

18

Function Mapping

Table 3 shows the mapping between NaturalAccess Software API functions and Global Call API functions.

NaturalAccess Software API Software API Function Global Call API Function

ctaCloseServices gc_Detatch

ctaCreateContext, ctaOpenServices, and nccStartProtocol, in sequence gc_Open or gc_OpenEx

ctaCreateQueue gc_Start

ctaDestroyQueue gc_Stop

ctaGetContextInfo gc_GetUsrAttr

ctaGetParmByName gc_GetParm

ctaGetText gc_ErrorInfo

ctaGetTextEx gc_ErrorValue

ctaInitialize followed by ctaCreateQueue gc_Start

ctaOpenServices gc_Attach or gc_AttachResource

ctaSetParmByName gc_SetParm

ctaStartTrace gc_StartTrace

ctaStopTrace gc_StopTrace

ctaWaitEvent gc_GetMetaEvent or gc_GetMetaEventEx

nccAcceptCall gc_CallAck or gc_AcceptCall, depending on the protocol

nccAnswerCall gc_CallAck or gc_AnswerCall, depending on the protocol

nccDisconnectCall gc_DropCall

nccGetCallStatus gc_CRN2LineDev, gc_GetANI, gc_GetCallState, or gc_GetDNIS

nccGetExtendedCallStatus gc_GetSigInfo

nccGetLineStatus gc_GetLineDevState or gc_GetXmitSlot

nccPlaceCall gc_MakeCall

nccRejectCall gc_CallAck

nccReleaseCall gc_DropCall, gc_ReleaseCall, or gc_ReleaseCallEx

nccStartProtocol gc_WaitCall

nccStopProtocol gc_Close

nccStopProtocol, ctaCloseServices, and ctaDestroyContext, in sequence gc_Close

nccStopProtocol followed by nccStartProtocol, gc_ResetLineDev

no-op (if an internal timeout is reached) gc_CallAck

oamBoardGetProduct followed by oamGetKeyword gc_GetCTInfo

swiDisableOutput gc_UnListen

swiMakeConnection gc_Listen

Table 3. Mapping of Dialogic® NaturalAccess™ Software API Functions to Dialogic® Global Call API Functions

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

19

Event Mapping

Table 4 shows the mapping between NaturalAccess Software API events and Global Call API events.

NaturalAccess Software API Events Global Call API Events

ADIEVN_PROTOCOL_ERROR GCDEV_ERROR or GCEV_TASKFAIL

CTAEVN_CLOSE_SERVICES_DONE with the value field equal to CTA_REASON_FINISHED GCEV_DETACH

CTAEVN_CLOSE_SERVICES_DONE with the value field different from CTA_REASON_FINISHED,
indicating the reason of the failure

GCEV_DETACH_FAIL

CTAEVN_OPEN_SERVICES_DONE with the value field equal to CTA_REASON_FINISHED GCEV_OPENEX followed by GCEV_ATTACH

CTAEVN_OPEN_SERVICES_DONE with the value field different from CTA_REASON_FINISHED GCEV_OPENEX followed by GCEV_OPENEXFAIL

NCCEVN_ACCEPTING_CALL GCEV_ACCEPT

NCCEVN_ANSWERING_CALL and NCCEVN_CALL_CONNECTED GCEV_ANSWERED

NCCEVN_CALL_DISCONNECTED with reason code in the value field set to NCC_DIS_TIMEOUT or
NCC_DIS_REMOTE_NOANSWER

GCEV_DISCONNECTED and GCEV_CALLSTATUS

NCCEVN_CALL_RELEASED GCEV_RELEASECALL

NCCEVN_EXT_CALL_STATUS_UPDATE with the value field set to CALL_STATUS_UUI GCEV_USRINFO

NCCEVN_PLACING_CALL GCEV_SETUP_ACK

NCCEVN_PLACING_CALL followed by NCCEVN_CALL_PROCEEDING GCEV_PROCEEDING

NCCEVN_PROTOCOL_ERROR GCEV_ERROR or GCEV_TASKFAIL

NCCEVN_PROTOCOL_EVENT with the value field ISDN_PROGRESS GCEV_PROGRESSING

NCCEVN_REMOTE_ALERTING GCEV_ALERTING

NCCEVN_REMOTE_ANSWERED and NCEVN_CALL_CONNECTED, in sequence GCEV_CONNECTED

NCCEVN_CALL_DISCONNECTED GCEV_DROPCALL

NCCEVN_CALL_RELEASED GCEV_DROPCALL

NCCEVN_SEIZURE_DETECTED followed by NCCEVN_INCOMING_CALL GCEV_OFFERED

NCCEVN_START_PROTOCOL_DONE with the value field CTA_REASON_FINISHED GCEV_RESETLINEDEV

NCCEVN_START_PROTOCOL_DONE with the value field different from CTA_REASON_FINISHED GCEV_RESTARTFAIL

NCCEVN_STOP_PROTOCOL_DONE GCEV_RESETLINEDEV

Table 4. Mapping of Dialogic® NaturalAccess™ Software API Events to Dialogic® Global Call API Events

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

20

Call State Mapping

Table 5 shows the mapping between NaturalAccess Software API call states and Global Call API call states.

NaturalAccess Software API Call State Global Call API Call State

NCC_CALLSTATE_ACCEPTING GCST_ACCEPT

NCC_CALLSTATE_PROCEEDING GCST_ALERTING

NCC_CALLSTATE_CONNECTED GCST_CONNECTED

NCC_CALLSTATE_SEIZURE GCST_DETECTED

NCC_CALLSTATE_OUTBOUND_INITIATED GCST_DIALING

NCC_CALLSTATE_DISCONNECTED GCST_DISCONNECTED

NCC_CALLSTATE_RECEIVING_DIGITS GCST_GETMOREINFO

NCC_CALLSTATE_DISCONNECTED GCST_IDLE

NCC_CALLSTATE_INVALID GCST_NULL

NCC_CALLSTATE_INCOMING GCST_OFFERED

NCC_CALLSTATE_PROCEEDING GCST_PROCEEDING

NCC_CALLSTATE_PLACING GCST_SENDMOREINFO

Table 5. Mapping of Dialogic® NaturalAccess™ Software Call States to Dialogic® Global Call API Call States

Running the SIP Demonstration Applications

Dialogic provides two demonstration applications (see “For More Information”) that can be used to compare the call flows between
NaturalAccess Software and PowerMedia HMP. Both demos are called siphmpdemo, and they allow application developers to
perform the following operations:

• � Place a call

• � Play audio from a file

• � Record audio to a file

• � Disconnect a call

The PowerMedia HMP based siphmpdemo application also allows for configuring PowerMedia HMP options, such as selecting
voice media and vocoder codecs.

Running the Dialogic® NaturalAccess™ Software Based siphmpdemo Application

To run the NaturalAccess Software based siphmpdemo application (available for download; see “For More Information”), do the
following:

1.  Extract files from NA-SipHMPdemo.zip. By default, the files will be extracted to \dialogic\packetmedia\siphmpdemo.

2.  Install Dialogic® NaturalAccess™ Software (R8.0 or later).

3.  Install SIP 2.0.

4.  Install a SIP evaluation license, if no SIP license is currently installed.

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

21

5.  Start ctdaemon, if it is not already started as service.

6.  Start the SIP server, if it is not already started as service.

7.  Run oamsys from the directory that contains the files from NA-SipHMPdemo.zip.

Optionally, open the siphmpdemo project in Microsoft® Visual Studio® and build the demo (for convenience, the demo file includes
a pre-built executable [siphmpdemo.exe]), as follows:

1.  In a command window, launch siphmpdemo with the –h option to view the available configuration options.

 >siphmpdemo –h

siphmpdemo displays the following text:

Usage: siphmpdemo [Options]

	 PROGRAM SETUP:
	 -b HMP Board Number				 (Default 0)
	 -d enable debug logging				 (Default 0)
	 -D RFC 2833 payload ID				 (Default 0, using inband DTMFs)
	 -s Timeslot						 (Default 0)
	
	 IP OPTIONS:
	 -L Local IP (x.y.z.w)				 (Default 127.0.0.1)
	 -l Local UDP Port Number			 (Default same as remote port)

	 VOICE MEDIA OPTIONS:
	 -e Record Encoding				 (Default 10)
		 Supported Formats include:
			 1 – 16 bit NMS ADPCM
			 2 – 24 bit NMS ADPCM
			 3 – 32 bit NMS ADPCM
			 10 – Mu-Law
			 11 – A-Law
			 13 – 16-bit PCM 8kbit/s
			 15 – 32 bit OKI ADPCM
			 20 – 32 bit G.726 ADPCM
			 23 – 32 bit IMA ADPCM
			 28 – G.729A

VOCODER OPTION :
	 -v Channel code					 (Default 0)
		 Channel codes include:
			 0 – G711 Mu-law
			 1 – G729a/b
			 2 = G711 A-law
			 4 = G726 32kbps

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

22

2.  Configure siphmpdemo, as needed, using the options shown above.

3. � In a command window, launch siphmpdemo with the –L option, and enter the local IP address of the server where PowerMedia
HMP is installed. For example:

siphmpdemo –L 10.128.18.102

siphmpdemo displays the following text:

--
|	 SIP/HMP Demo (NMS flavor)					 |
--

Using inband DTMFs
CT Access Environment Initialized
SIP protocol started

			 Type ‘c number’ Place call.
			 Type ‘d’ Disconnect call.
			 Type ‘p filename’ Play from file.
			 Type ‘r filename’ Record to a file.
			 Type ‘q’ to quit.

4.  Use siphmpdemo to place a call, play and/or record to a file, and disconnect a call.

5.  Type q to quit the application.

Running the Dialogic® PowerMedia™ Host Media Processing Software Based siphmpdemo Application

To perform the operations in this section, PowerMedia HMP should be installed as referenced in the “Installing and Configuring
PowerMedia HMP” section of this application note.

To run the PowerMedia HMP based siphmpdemo application (available for download; see “For More Information”), do the
following:

1.  Extract the siphmpdemo.zip file. The files will be extracted by default to \dialogic\hmp\siphmpdemo.

2. � Optionally, open the siphmpdemo project in Microsoft® Visual Studio® and build the demo. For convenience, the demo file
includes a pre-built executable (siphmpdemo.exe).

3. � Start the Dialogic Configuration Manager (DCM) from the task bar (Start>Programs>Dialogic HMP>Configuration Manager -
DCM).

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

23

A window similar to the following displays:

4. � Click the green arrow (>) in the toolbar near the top of the window to start PowerMedia HMP. The system might take a few
minutes to start.

5.  In a command window, Launch siphmpdemo with the –h option to view the available configuration options.

	 >siphmpdemo –h

siphmpdemo displays the following text:

Usage: siphmpdemo [Options]
	 PROGRAM SETUP:
	 -b HMP Board Number				 (Default 0)
	 -D RFC 2833 payload ID				 (Default 0, using inband DTMFs)
	 -s Timeslot						 (Default 0)

	 IP OPTIONS:
	 -L Local IP (x.y.z.w)				 (Default 127.0.0.1)
	 -l Local UDP Port Number			 (Default same as remote port
	 VOICE MEDIA OPTIONS:
	 -e Play/Record Encoding				 (Default 7)
		 Supported Formats include:
			 1 – 16 bit NMS ADPCM

	

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

24

			 2 – 24 bit NMS ADPCM
			 3 – 32 bit NMS ADPCM
			 10 – Mu-Law
			 11 – A-Law
			 13 – 16-bit PCM 8kbit/s
			 15 – 32 bit OKI ADPCM
			 20 – 32 bit G.726 ADPCM
			 23 – 32 bit IMA ADPCM
			 28 – G.729A

	 VOCODER OPTION :
	 -v Channel code					 (Default 0)
		 Channel codes include:
			 0 – G711 Mu-law
			 1 – G729a/b
			 2 = G711 A-law
			 4 = G726 32kbps

6.  Configure siphmpdemo, as needed, using the options shown above.

7. � In a command window, launch siphmpdemo with the –L option, and enter the local IP address of the server where PowerMedia
HMP is installed. For example:

	 siphmpdemo –L 10.128.18.102

siphmpdemo displays the following text:

Using inband DTMFs
--
|	 SIP/HMP Demo (Dialogic flavor)				 |
--

Using inband DTMFs
SRL Model Set to SR _ STASYNC | SR _ POLLMODE
SIP device being opened
Opened :N _ iptB1T1:P _ SIP:M _ ipmB1C1
Timeslot 0: Voice TS = 4096

			 Type ‘c number’ Place call.
			 Type ‘d’ Disconnect call.
			 Type ‘p filename’ Play from file.
			 Type ‘r filename’ Record to a file.
			 Type ‘q’ to quit.

8.  Use siphmpdemo to place a call, play and/or record to a file, and disconnect a call.

9.  Type q to quit the application.

Migrating Applications from Dialogic®
NaturalAccess™ PacketMedia™ Host Media
Processing Software to Dialogic® PowerMedia™
Host Media Processing Software

Application Note

25

For More Information

Zip files containing the demonstration files can be downloaded:

Dialogic-SipHMPdemo

NA-SipHMPdemo

A Readme file, “siphmpdemo.doc”, for the sample code “siphmpdemo.doc” is available with the demos.

http://www.dialogic.com/goto/?11876
http://www.dialogic.com/goto/?11876

www.dialogic.com

Dialogic Corporation

9800 Cavendish Blvd., 5th floor

Montreal, Quebec

CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO LICENSE, EXPRESS

OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT

BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/

OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY

INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic® products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice.

Dialogic, NaturalAccess, NaturalCallControl, PacketMedia, and PowerMedia are either registered trademark or trademarks of Dialogic Corporation. Dialogic’s trademarks

may be used publicly only with permission from Dialogic. Such permission may only be granted by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal,

Quebec, Canada H4M 2V9. Any authorized use of Dialogic’s trademarks will be subject to full respect of the trademark guidelines published by Dialogic from time to time

and any use of Dialogic’s trademarks requires proper acknowledgement.

Microsoft, Windows, and Visual Studio are registered trademarks of Microsoft Corporation in the United States and/or other countries. Other names of actual companies

and products mentioned herein are the trademarks of their respective owners. Dialogic encourages all users of its products to procure all necessary intellectual property

licenses required to implement their concepts or applications, which licenses may vary from country to country.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios or environments in which Dialogic® products can be used.

Such use case(s) are non-limiting and do not represent recommendations of Dialogic as to whether or how to use Dialogic products.

Copyright © 2010 Dialogic Corporation All rights reserved.	 08/10  11875-01

Small Logo

Medium Logo

Large Logo

