
Application Note

Using Ethereal to Debug
SIP and RTP on Dialogic®

Voice over IP (VoIP)
Products

Application Note Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products

Executive Summary

This application note explains how to set up, configure, and use the

Open Source, PC-based network protocol analyzer Ethereal with

Dialogic® voice over Internet Protocol (VoIP) telephony products.

Setting up and using Ethereal in a telephony hardware and software

environment involves some special considerations, which this

application note addresses. This note also serves as a beginning

installation, configuration, and user’s guide for Ethereal with Dialogic

VoIP products. It explores the use of Ethereal in a VoIP test

environment by describing how to get started debugging VoIP protocols

using Ethereal, providing debugging guidelines, and showing examples

of real-world problem scenarios.

Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products Application Note

1

Table of Contents
About Ethereal.. 2

Test Environment.. 2

Methodology... 2

Windows® Installation.. 2

Linux Installation .. 2

Openxtra Ethereal Installation ... 3

General Setup and Use .. 4

VoIP Problem-Solving ... 5

Troubleshooting Scenarios .. 5

SIP Signaling Working but No Voice... 5

Packets Lost to Local Loopback Interface .. 6

Address Changed for Host Media Processing Software Host System 6

rfc2833 Type DTMF Not Working Properly... 6

Conclusions.. 7

Product List .. 7

Dialogic Host Media Processing Software System... 7

Dialogic Telephony Hardware-Based System.. 7

Cisco ATA 188 .. 7

Snom 200 ... 7

Networking Equipment .. 7

References ... 8

Acronyms ... 8

2

About Ethereal

Ethereal is an Open Source, PC-based protocol analyzer

project providing network analysis features that can help a

developer understand the behavior of a VoIP installation.

Ethereal can monitor and collect Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP)

packets from a network and sort and display them in an

intelligible way.

Ethereal is widely used by network professionals for

troubleshooting, analysis, software and protocol

development, and education. Its Open Source license

allows experts in the networking community to add

enhancements.

Ethereal runs on many popular computing platforms,

including the Unix, Linux, and Windows® operating

systems.

For more information and to download Ethereal, visit

http://www.ethereal.com.

Test Environment

The test environment consists of four different VoIP

components that interoperate with one another.

Two of the selected VoIP components are based on

hardware and software products from Dialogic. The first

Dialogic component is a Dialogic® architecture server

running Dialogic® Host Media Processing (HMP)

Software. (To learn more about HMP software, go to

http://www.dialogic.com/products/ip_enabled/hmp_softw

are.htm.) With HMP software, all Session Initiation

Protocol (SIP) signaling, Real Time Protocol (RTP)

streaming, and media processing are handled in host

software and the IP session. Voice streaming data is

transmitted through the host Ethernet Network Interface

Card (NIC). In addition to SIP, the H.323 protocol is also

supported by VoIP hardware and software products from

Dialogic, with its functionality exposed via the Global Call

API. While SIP is used for the purposes of this paper,

H.323 could also be used in the test environment.

The second Dialogic component is a Dialogic architecture

server using a Dialogic® telephony board that provides

embedded RTP streaming and media processing features.

The third component is a Cisco Analog Telephone Adaptor

(ATA) 188 that provides analog to VoIP media gateway

features and is attached to two common analog phones.

Finally, a SIP phone from Snom Technology AG is also

included in the test environment.

The SIP endpoints are illustrated in Figure 1.

The communications service framework shown in Figure 1 is

a C++ framework developed at Dialogic. It is used to

develop communications applications using the Dialogic®

Standard Runtime Library. While this framework is used in

the test environment described in this application note,

developers can also use an application or middleware written

to the R4 and Global Call APIs instead of this framework.

The example configuration shown in Figure 1 represents a

commonly used VoIP application development environment.

However, the configuration also contains several features that

may be less obvious to newcomers to Dialogic® telecom

solutions or to SIP/RTP. These features will be explained in

the "General Setup and Use" section that follows.

Methodology

To debug any SIP/H.323/RTP VoIP problem, you closely

monitor the operation of the network. Resolving a

problem often requires taking an accurate look at all the

packets involved during the course of a call. You can

purchase expensive "sniffers" that do this based on

proprietary hardware, but Ethereal, a freely-available Open

Source product, provides comparable functionality for

identifying most common (and many less common) issues.

Note that although Ethereal is available for many operating

systems, this application note describes its use only on the

Windows and Red Hat Linux operating systems.

Windows® Installation

The Windows installation is done by downloading the

binary version of Ethereal from

http://www.ethereal.com/distribution/win32/.

Systems may require version 3.0 or later of the WinPCap

Packet Capture Drivers. Links on the binaries download

page point to the driver download. You should install the

drivers before proceeding with the Ethereal installation

directions. The installation is complete when an Ethereal

startup icon appears on the desktop of the target system.

Linux Installation

Ethereal can be installed on Red Hat Linux using Remote

Packet Modules (RPMs). Locate the Ethereal version

Application Note Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products

http://www.ethereal.com
http://www.dialogic.com/products/ip_enabled/hmp_software.htm
http://www.dialogic.com/products/ip_enabled/hmp_software.htm
http://www.ethereal.com/distribution/win32/

Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products Application Note

compatible with the Red Hat Linux version you are using

(go to http://www.rpmfind.net to locate these and other

RPMs.) There are four packages you must install for the

full GUI-based product. Install them in this order:

1. Ethereal-base

2. Ethereal-gtk+

3. Ethereal-usermode

4. Ethereal-kde (or ethereal-gnome, depending on the

window manager used)

You can then start the utility by simply typing “ethereal”

in a shell.

Openxtra Ethereal Installation

An extended version of Ethereal, Ethereal-XTRA, is also

available under GNU Public License from Openxtra at

http://www.openxtra.co.uk/freestuff/ethereal-xtra.php.

Ethereal-XTRA is available only for the Windows

operating system, with installation based on an

installation wizard.

A useful feature for VoIP work is RTP stream analysis.

Once an RTP stream has been captured, it is possible to

easily look at relationships between packets. For example,

you can peruse delay between packets by scrolling down

the list. If a 20 msec packet size has been specified, you

can note how close to the 20 msec boundary each packet

is delivered. Jitter, which is a variation in packet arrival

Figure 1. SIP Endpoints

3

HMP-based SIP Endpoint

IVR Application

Communications Services
Framework

Dialogic Host Media Processing
Software (GlobalCall-based SIP)

Host Ethernet NIC

Ethereal

Analog Phones

Analog
2-Wire

Connections

Cisco ATA
188

SIP Signaling and
RTP Streaming

RTP Streaming

SIP Signaling and
RTP Streaming

SIP Signaling SIP Signaling and
RTP Streaming

Host Ethernet NIC Dialogic
DM/IP240-1T1

Vovida
SIP Stack

Dialogic
System Release

Communications Service
Framework

IVR Application

Ethereal

IPLink-based SIP Endpoint

SNOM 200
SIP Phone

Handset

NetGear DS108 Dual Speed HUB

http://www.rpmfind.net
http://www.openxtra.co.uk/freestuff/ethereal-xtra.php

4

time, is calculated for each packet as well. Figure 2 shows

an example of RTP stream analysis.

Note that the two streams — one for each direction —

are shown separately. Another feature makes it possible to

dump the payloads for either RTP stream into a file so

that the audio data it is carrying can be heard.

General Setup and Use

You should run Ethereal in "promiscuous mode,"

meaning that it will grab and display any packet that it

sees on the Ethernet NIC, not just packets destined for its

own address. This is important for two reasons:

1. The Dialogic telephony board has its own address

and NIC. (The host NIC is not used for RTP.)

2. The RTP (or SIP) packets could be headed

elsewhere, not to the system that you are expecting,

where Ethereal is running.

You can set promiscuous mode in either of two locations:

• In the Edit -> Preferences -> Capture screen

• In the Capture -> Start -> Capture options window

that pops up when starting packet capture

We recommend that you plug in all Ethernet connections

into an Ethernet hub, rather than a router. A router has the

intelligence to not waste system resources by forwarding

packets not destined for its address. A hub simply

broadcasts all packets to all connected NICs. Access to IP

packets on the system's LAN can be beneficial when using a

host-based Ethernet monitor such as Ethereal. RTP packets

may be headed for the NIC on the Dialogic telephony

board, but they need to be caught and displayed on the

system running Ethereal. Even with an Ethernet router,

Ethereal can still be used to monitor the traffic coming in

and out of the Dialogic VoIP system (see Figure 1) to debug

or to troubleshoot problems specific to that particular

system (for example, a connection with no RTP audio).

The operation of Ethereal is described in an online

manual, which you can download at

http://www.ethereal.com/docs/user-guide. Here we will

only cover the basics for setting up and using Ethereal to

get you going as quickly as possible with the utility. For

general use, set these display options when a Capture ->

Start is used to begin packet capture:

X Update list of packets in real time

X Automatic scrolling in live capture

Application Note Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products

Figure 2 .OpenXtra RTP Analysis

http://www.ethereal.com/docs/user-guide

Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products Application Note

This allows you to get an idea of what is happening in

real time (although any in-depth analysis must be done

after a call is made and the trace stopped).

Ethereal provides a full set of filters to control collection

or display of protocols. Initially, ensure that the SIP

protocol is enabled:

Edit -> Protocols -> Enable All

Adding “SIP” to the filter text box on the bottom left side

of the screen and then selecting the Apply button will

either suppress collection (pre-capture) or display (post-

capture) of RTP packets. This is desirable due to the

number RTP packets generated. You can deactivate

filtering by pressing the Reset button.

RTP packets are normally displayed simply as UDP. To

view them as RTP:

• Select a UDP packet

• Decode by selecting Tools-> Decode As -> Transport

-> RTP -> Apply

VoIP Problem-Solving

In general, approach any VoIP problem by first looking at

the SIP signaling. Only investigate RTP once the SIP

protocol trace looks correct. Try a test run in which the

inbound or outbound call is made, then look closely at

the results. These guidelines describe a quick checklist:

• Are the IP addresses correct for the source and

destination systems or phones?

• The default SIP port is 5060 unless otherwise

specified. Check the port number in the UDP header.

• Are the addresses and ports correct for the Dialogic

telecom board Ethernet NIC?

• For a simple User-Agent-to-User-Agent session, the

basic message flow will be similar to:

o Caller ---- INVITE --� Called

o Caller �-- Trying ---- Called

o Caller �-- Ringing --- Called

o Caller �-- OK -------- Called

o Caller ---- ACK -----� Called

If you see this message flow, then the SIP signaling is

likely correct.

• Is there a match in the choice of media (given by

Media Attribute) in the Session Description Protocol

(SDP) portions of the INVITE and OK messages?

• Does RTP streaming start after the SIP ACK

acknowledgement message?

• Are the source and destination addresses for the RTP

packets correct?

• Take a look at the RTP payload type. Does the

payload type match that requested by the call

originator?

• Look at the RTP payload itself. Does it look like a

"random" mixture of values that would likely be

describing digitized voice? Or is it a more a repetitive

set of values, such as 0xff, that could indicate silence?

• If Ethereal-XTRA is used, listening to the RTP-based

audio may also be useful. To do this:

o Select a UDP packet

o Decode as RTP by selecting: Tools-> Decode As ->

Transport -> RTP -> Apply

o Invoke RTP stream analysis by selecting Tools->

Statistics -> RTP Streams -> Analyze. This will

bring up the analysis window, with each stream

under a different tab.

o Streams may be saved separately or mixed as .au

files (8000 HZ, 8-bit, mono PCM) by selecting the

Save Payload button. This brings up the Save

window, where it is possible to select Forward,

Reverse, or Both for the stream(s) to save. You must

specify a directory in which to save and a file name.

o The resulting .au audio file can then be heard on a

system with a sound card with any audio player

such as Windows Media Player or CoolEdit.

Troubleshooting Scenarios

This section presents in detail four real-world problems to

demonstrate common failure scenarios and how to address

them using Ethereal as an Ethernet packet monitor.

SIP Signaling Working but No Voice

Symptom: An inbound call is made into an interactive

voice response (IVR) application on the system that uses

the Dialogic telecom board. The SIP stack is external to

the board. Based on the host SIP message, flow looks

5

6

normal (INVITE/Trying/Ringing/OK/ACK). However,

no audio is heard when the SIP connection is complete.

Analysis and Resolution: Initial trace examination shows

the expected SIP packets but no RTP packets. The SDP

portion of the OK message returned by the IVR system

to the SIP call initiator (Cisco ATA) contains the address

and port for the RTP stream back to the application. On

examination, the connection information field shows an

address of 192.168.1.9. However, the IP address of the

system itself, used for SIP, is 192.168.1.101. This is not

unexpected, since the Dialogic telecom board has its own

Ethernet NIC, with an address of 192.168.1.9, assigned

when the board was configured.

At the same time, there is a string of Address Resolution

Protocol (ARP) packets asking “Who has 192.168.1.9?

Tell 192.168.1.115”. This means that the Cisco ATA

(192.168.1.115) is requesting the MAC (unique hardware

address) address that goes along with the IP address of

192.168.1.9. The NIC on the Dialogic telecom board

itself would normally supply this information, but for

some reason it is not responding.

Examination of the cabling shows that the RJ-45

connector on the Dialogic telecom board has worked

itself loose. When it is reattached, normal operation

resumes on the next SIP call.

Packets Lost to Local Loopback Interface

Symptom: On receipt of an INVITE method, all further

SIP communication stops. RTP streaming does not start.

Analysis and Resolution: If packets were going out, even

to an unwanted address, they still should be seen on the

NIC of the Ethereal system. However, application traces

indicate that the outgoing messaging is taking place.

Examining the CallID in the SIP Message Header in the

INVITE reveals that it contained, as part of the ID, an

address of 127.0.0.1, which is the standard address of any

system’s local loopback interface. This leads to the source

system’s /etc/hosts file, where it is found that the system’s

name, bigsys, appears on the line specifying the local

loopback address:

127.0.0.1 localhost localhost.localdomain bigsys

192.168.1.100 bigsys

Removing the name from the first line resulted in an

address of 192.168.1.100 appearing in the CallID and its

use as the return address for subsequent messages.

Address Changed for Host Media Processing
Software Host System

Symptom: A SIP call inbound to an IVR application on a

system based on HMP software proceeds normally. RTP

streaming starts, but no audio is heard.

Analysis and Resolution: At first glance, SIP signaling

looks normal. RTP streaming starts. However, closer

inspection reveals that packets are going only in one

direction – from the HMP software IVR system to the

Cisco ATA that initiated the call. There are some packets

heading in the other direction, but they are ARP Broadcast

packets. (“Who has 192.168.1.100? Tell 192.168.1.115”.

192.168.1.115 is the IP address of the Cisco ATA.) That

makes sense. However, 192.168.1.100 is an old address,

not used anymore since the HMP software host was

recently moved and its address changed to 192.168.1.200.

Why is the ATA trying to find an old, unused address?

Looking more closely at the SDP portion of the OK sent

from the HMP software host to the ATA reveals an

address of 192.168.1.100 in the Connection Information

field. That is how the ATA was instructed to stream to

that address, which it is unsuccessfully trying to find.

When HMP software is installed, the system’s IP Address

is entered as part of the process. Perhaps the RTP stack

does not get its NIC address from the IP subsystem itself?

That is indeed the case. The address entered as part of the

install is kept in the Registry. When changing the system’s

TCP/IP address, the registry entry got out of synch with

the system's actual address.

Reinstalling HMP software and specifying the new IP

address will solve the problem. A quicker solution is to

modify the address entry with Regedit, which you can

find at HKEY_LOCAL_MACHINE -> SOFTWARE ->

SBLabs -> dm3ssp -> IP_Addr0.

rfc2833 Type DTMF Not Working Properly

Symptom: An IVR application and Snom SIP phone

have been set up to work with rfc2833 DTMF tone

generation, but DTMF recognition is not working.

Analysis and Resolution: rfc2833 DTMF is a special type

of payload carried by an RTP packet. This type of DTMF

does not rely on an audio representation of the tone, and

is thus more compact and reliable. However, both parties

in a call must agree that rfc2833 is being used for the

tone representation.

Application Note Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products

Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products Application Note

The Snom SIP phone has been configured for out-of-

band DTMF (rfc2833) and a Dialogic® application set up

to handle the same sort of DTMF recognition. One side

(or possibly both) is not working correctly.

The Snom SIP Phone has been configured to handle out-

of-band DTMF with a payload type of 100. The

application should be doing the same. But what do these

particular DTMF packets look like? After running even a

short test call, hundreds or thousands of RTP packets are

captured. Ethereal’s filter must be used to separate out the

voice from rfc2833 packets. This can be done as follows:

• Stop the call’s trace.

• Select a UDP packet.

• Use Tools-> Decode As -> Transport -> RTP ->

Apply to interpret the packets as RTP.

• Create a filter for RTP payload type 100 with:

o Edit -> Display Filters.

o Add a Name for a new filter.

o Select “Add Expression” button and scroll down

and expand RTP entry.

o Select “Payload type”, “==” and enter a value of

100 for the payload.

o Accept and Save the new entry.

• Apply the filter by selecting the filter button on the

bottom left corner of the screen. This will bring up

the list of predefined filters, including the one just

created. Select and apply it.

The RTP packets remaining in the trace are those with a

payload type of 100. The first two digits of the payload

correspond to the DTMF key pressed during the test call

– 01, 02, etc. So, the SIP phone seems to be doing its job.

This leads to the other SIP endpoint. Examining the

application code reveals that it is expecting rfc2833

DTMF, but is actually looking for a different payload

type. The Dialogic® RTP streaming interface, once

open, has a number of parameters that can be set to

define the RTP sessions that will be used. Here,

ulParmValue in IPM_PARM_INFO has been set to 96,

indicating that a type 96 payload is expected. This does

not match the payload type sent by the phone.

ulParmValue is set to 100, the application is recompiled

and rerun, and subsequent test calls now have working

DTMF detection.

Conclusions

The Open Source, PC-based network protocol analyzer

Ethereal can be a great help in an environment that uses

telephony hardware and software. By understanding the

special considerations for this environment as outlined

in this document, it is easy to get started debugging

Dialogic VoIP protocols using Ethereal.

Product List

Dialogic® Host Media Processing Software System

• Microsoft Windows operating system

• Dialogic Host Media Processing Software

• SIP under Global Call

• Ethereal

Dialogic® Telephony Hardware-Based System

• Tech Support Chassis

• Dialogic® DM/IP241-1T1-PCI-100BT IP Board

• Red Hat Linux operating system

• Dialogic® System Release Software

• Vovida SIP

• Ethereal

Cisco ATA 188

• Two-line analog phone to IP gateway

• SIP software

Snom 200

• SIP phone

• Snom200-SIP

Networking Equipment

• NetGear 8 Port Pro Series Dual Speed Hub, DS108

7

8

References

Dialogic product information —

http://www.dialogic.com

Dialogic telecom support —

http://www.dialogic.com/support/

Communications Services Framework Project —

http://sourceforge.net/projects/commsvcfw

Ethereal Project —

http://www.ethereal.com

Linux RPM Locator Website —

http://www.rpmfind.net

Openxtra Ethereal —

http://www.openxtra.com/products/ethereal_xtra.htm

Acronyms

ACK SIP message sent by the caller after a final

response has been received for an INVITE

request.

API Application programming interface

ARP Address resolution protocol

ATA Analog telephone adaptor

DTMF Dual tone multiple frequency

GNU Open source software licensing from the GNU

Project (http://www.gnu.org)

GUI Graphical user interface

HMP Host Media Processing

IP Internet protocol

IVR Interactive voice response

LAN Local area network

NIC Network interface card

rfc2833 RTP request for comment proposal for out-of-

band DTMF transmission

RPM Remote packet module

RTP Real time protocol

SDP Session description protocol

SIP Session initiation protocol

TCP Transmission control protocol

UDP User datagram protocol

VoIP Voice over internet protocol

Application Note Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products

http://www.dialogic.com
http://www.dialogic.com/support/
http://sourceforge.net/projects/commsvcfw
http://www.ethereal.com
http://www.rpmfind.net
http://www.openxtra.com/products/ethereal_xtra.htm
http://www.gnu.org

Using Ethereal to Debug SIP and RTP on Dialogic® Voice over IP (VoIP) Products Application Note

9

www.dialogic.com

To learn more, visit our site on the World Wide Web at http://www.dialogic.com
Dialogic Corporation
9800 Cavendish Blvd., 5th floor

Montreal, Quebec

CANADA H4M 2V9

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH PRODUCTS OF DIALOGIC CORPORATION OR ITS SUBSIDIARIES (“DIALOGIC”). NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS
PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS
FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications.

Dialogic may make changes to specifications, product descriptions, and plans at any time, without notice.

Dialogic is a registered trademark of Dialogic. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such permission may only be granted
by Dialogic’s legal department at 9800 Cavendish Blvd., 5th Floor, Montreal, Quebec, Canada H4M 2V9. Any authorized use of Dialogic's trademarks will be subject
to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic’s trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners. Dialogic encourages all users of its products to procure
all necessary intellectual property licenses required to implement their concepts or applications, which licenses may vary from country to country.

This document discusses Ethereal, which is an open source product. Dialogic is neither responsible for your decision to use Ethereal (or any other open source product)
in connection with Dialogic products including without limitation those referred to herein, nor is Dialogic responsible for any present or future effects such usage
might have, including without limitation effects on your products, business, or intellectual property rights.

Copyright © 2007 Dialogic Corporation All rights reserved. 9008-02 06/07

http://www.dialogic.com
http://www.dialogic.com

