
Intel in
Communications

Building Conferencing
Applications Using Intel®

NetStructure™ Host Media
Processing Software

Application Note

Table of Contents

Executive Summary 1

What Is Host Media Processing? 1

HmpConfDemo Overview 1

HmpConfDemo Features 2

Call Control 2

Media 2

Conferencing 2

Application Interface and Configuration 2

Call Logging 2

Limitations 3

HmpConfDemo Implementation 3

System Requirements 3

Programming Model 3

Detailed Description 3

Running HmpConfDemo 5

Preparing the Configuration File 5

Entering a Conference 7

Accessing Administrative Features 7

Muting a Phone Set 8

For More Information 8

Appendix A: List of Defaults 8

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software Application Note

Executive Summary
Intel® NetStructure™ Host Media Processing
(HMP) software performs media processing
tasks on general-purpose host processors in
servers based on Intel® Architecture without the
use of specialized digital signal processors
(DSPs). This application note describes
HmpConfDemo, a sample audio conferencing
application that uses release 1.1 of HMP
software for the Windows operating system to
demonstrate its capabilities, including its use of
H.323 and the Session Initiation Protocol (SIP)
for call control.

What Is Host Media Processing?
Host media processing is a new way to deliver
voice media processing in telephony
applications by using the media processing
capabilities of the host processors in
off-the-shelf servers, eliminating the need for
special telephony hardware based on DSPs.

Intel NetStructure Host Media Processing
(HMP) software implements host media
processing and is optimized for Intel® Pentium®

processors. As a result, HMP software can
supply media services for building flexible,
scalable, cost-effective next-generation IP
media servers. Developers can more rapidly
create advanced voice processing applications
while VARs and end users can significantly
reduce the costs associated with installing,
configuring, and maintaining these applications.

Release 1.1 of HMP software for the Windows
operating system provides these main features
■ Built-in network interface card (NIC) —

Provides IP connectivity

■ Industry-standard H.323 and SIP proto-
col support — Used for call control

■ H.450.2 supplementary services protocol
support — Supplies call transfer capability

■ IP multicast (transmit only) — Facilitates
implementation of features such as
announcements and listen-only conferences
with large numbers of participants

Other important features include:
■ Low-bit-rate coders — Supports G.711,

G.723, and G.729

■ Continuous Speech Processing — Allows
easy migration from PSTN-based speech
solutions on telephony boards to an HMP
environment

■ Scalability — Provides up to 96 concurrent
user sessions with a mix of voice, speech,
T.38 fax, and conferencing media processing
resources per system, with at least 50% of
CPU and memory available to an application

■ Dual CPU configurations with
hyperthreading — Enables greater densities
per inch of rack space.

■ Higher density — Supplies up to 120 ports
of interactive voice response (IVR) or
conferencing per system.

■ T.38 fax – Supports the most popular fax
protocol for voice over IP (VoIP) networks

To ensure real-time media processing
performance, HMP software is implemented as
a Windows* operating system kernel-mode
driver, which runs at real-time priority. The
software is optimized for Intel Pentium III and
Intel Pentium 4 processors.

HmpConfDemo Overview
In order to demonstrate the capabilities of HMP
software release 1.1 for the Windows operating
system, a simple audio conferencing
application called HmpConfDemo, has been
developed. HmpConfDemo shows how release
1.1 directly supports the H.323 and SIP
signaling protocols for call control through the
use of the Intel® Dialogic® Global Call API.

This document explains HmpConfDemo
in detail, and describes ways to use the
features of HMP software. The
application is available for download at
http://membersresource.intel.com/license/
agreement.asp?url=downloads/
appnotes/8896/HmpConfDemo.zip. The
code can be used to easily create
implementations that adapt existing
communications applications for host media
processing.

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

1

Application Note

http://membersresource.intel.com/license/

HmpConfDemo Features
HmpConfDemo is specifically designed to
demonstrate the enhanced features of HMP
software 1.1 listed in this section.

Call Control
■ Global Call API

■ SIP and H.323

■ DTMF modes — In-band (H.323) and
in-band and RFC 2833 (SIP)

■ RAS (gatekeeper) support via Global Call API

Note that the number of simultaneous calls is
limited by the number of licensed channels.

Media
■ R4 Voice API

■ Audio CODEC — G.711 µLaw with 10, 20,
or 30 ms frame size

■ Play and record capabilities

■ Detection and generation of DTMF digits

■ Bidirectional audio streaming using the
Continuous Speech Processing API set

Conferencing
■ Programming interface — Intel’s DCB API

■ Active talker detection

■ DTMF detection

■ DTMF clamping (optional)

■ Echo cancellation (optional)

■ Monitoring via receive-only audio recorder

■ Setting or retrieving conference attributes
while a conference is in progress

Application Interface and Configuration
HmpConfDemo provides a convenient console
interface that supplies information about appli-
cation performance and system statistics.
Console command capabilities include:
■ Start and stop the monitor for a specific

conference

■ Identify active talkers

■ Update the conferencing configuration by
reloading the configuration file without
restarting the application

■ Change verbosity

At startup, HmpConfDemo reads the
conf_demo.cfg configuration file to pre-set
some common parameters. (Note that this file
must be placed in the same directory as the
application executable file.) All parameters are
optional. If some parameters are omitted or
the file cannot be found in the default location,
the application will use a default parameter
set, which is hard-coded in the program code.

The following section lists the parameters that
can be set at startup.

Application-Level
■ Number of simultaneous calls

■ Path and filenames for audio files for
welcome, invalid passcode, call later, and
goodbye messages

■ Path and filename for application log file

■ Maximum size of log file

■ Log file and console information verbosity

Board-Level
■ Active talker feature (enable/disable)

■ Active talker detection interval

■ DTMF clamping (enable/disable)

■ DTMF digit to enable/disable muting for
participants

Single-Conference
■ Passcode

■ DTMF detection during conference
(enable/disable)

■ Echo cancellation (on/off)

Refer to the Running HmpConfDemo section
later in this document for a list of the
application parameters that can be updated
during runtime and the Appendix for a list of
default parameters.

Call Logging
All events, messages, and API calls are saved
in a text file while the application is running.
The maximum size of the log file and the
logging level (verbosity) may be set via the
application configuration file. If the data in the
log file exceeds its specified maximum size,
the logging data wraps to the beginning of the
file and overwrites the data that was logged
previously.

Application Note

2

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

Limitations
■ To simplify the source code for

HmpConfDemo, gatekeeper support has not
been omitted. However, sample code for
gatekeeper integration is supplied as a
starting point for programmers who want to
add gatekeeper support.

■ Conference-linked media resources will not
detect DTMF tones if a conferee is in receive-
only (mute) mode. A separate media resource
is required to detect DTMF tones from
conferees in receive-only mode.

■ Volume control for individual participants is
not supported in release 1.1 of HMP
software.

HmpConfDemo Implementation
This section describes the system requirements
and programming model for HmpConfDemo. It
also includes details about its classes, objects,
and call flow.

System Requirements
■ Hardware — One standard NIC card

■ Software — Intel NetStructure Host Media
Processing Software Release 1.1 for Windows

■ Operating System — Microsoft Windows*
2000

Programming Model
HmpConfDemo is written in asynchronous
mode, using a single process/thread. Events
are handled using polled mode, where the
sr_waitevt() function is called and exits when an
event is available. Even though a single-thread
approach may be not optimal for high-density
applications, this model was chosen to simplify
programming and make the sample
implementation easier to understand.

Detailed Description
Conferencing features in HmpConfDemo are
accessed using the DCB API. The Global Call
API is used to implement call control. Both
APIs are designed for DM3 architecture. Intel’s
voice API is used for basic voice functionality.

Classes and Objects
HmpConfDemo defines and uses the C++
classes described in Table 1.

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

3

Application Note

Class Description

CAppLog Provides the interface for application logging

CConsoleIo Provides a set of console input/output operations. Contains two
independently scrolled windows, a static menu bar, and user
input space. Allows a user to dynamically build a menu,
asynchronously wait for a menu key, or supply input. User
interaction enables two types of callback functions, invoked by
pressing a key. Function keys enable menu choices and the
ENTER key enables user input.

CConfManager Controls creation, modification, and deletion of conferences;
manages resource usage; and provides a conferencing service
interface to the main module through a single object.

CConference Implements the DCB (conferencing) API on a low level. The single
CConfManager class contains a linked list of existing conferences
represented by CConference objects. CConfManager dynamically
creates CConference objects as needed.

CIpDev Abstracts IP signaling, H.323, and SIP under the Global Call API
and streaming interface. CIpDev objects provide basic voice
functionality on the contained media resource.

Table 1. Classes in HmpConfDemo

Call Flow
At startup, the demo creates a single object of
the CConfManager, CConsoleIo, and
CAppLog classes. CConfManager initializes all
conference resources available on the system
and sets board-level parameters that define all
conferencing features (such as DTMF
clamping, volume control, etc.) The application
then enters an endless loop, where it shares
time between two waiting functions:
sr_waitevt(20), which waits for an event with a
20 msec timeout, and waitForUserInput().

When an event is detected by sr_waitevt(),
main() will check the event family first to define
whether the event was generated by the IP
front end device or the conference device.

■ If the event is generated by the IP call
control library, main() will search the event
source object in a global array of CIpDev
objects called ipDevArray, using the
getEventObject() function and event device
handle as an argument of this function.
main() will then call the processEvent()
method of this object.

■ If the event is detected on a DCB
(conference) device, the event will be passed
to the processEvent() method of the single
CConfManager object, which, in turn, will
search an STL list of existing conference
objects in an attempt to identify the
conference associated with the event.

While the conference events detected on a
DCB device are used mainly for informational
purposes, the events from the IP front end are
driving the application state machine.

Some IP events may be fully processed by the
CIpDev class, while others require additional
instruction from main(). A return code of 0
from the processEvent() method of the CIpDev
class indicates that the CIpDev object has
processed the event completely and no further
processing is necessary. A non-zero return
code indicates that the event object must be
given further instructions by the main business
logic module. This approach is illustrated
below using a single incoming IP call scenario.
1. An IP channel device receives a

GCEV_OFFERED event from the Global

Call API library, indicating an incoming call
request on the IP channel.

2. The GCEV_OFFERED event is processed
completely by the CIpDev class state
machine, defined in the processEvent()
method, which sets IP capabilities for the
call by using the setCapabilities() method
and then calls the dx_Listen() and
dti_Listen() methods to establish a
full-duplex connection between the
network device and corresponding voice
resource. The processEvent() method then
returns a zero value to main().

3. Since dti_Listen() is called asynchronously,
it will cause a GCEV_LISTEN event to be
generated for the device. The event is
passed to the processEvent() method of
CIpDev, where the state machine decides if
the call can be answered, and, if it can,
calls the answer() function.

4. The answer() method generates a
GCEV_ANSWERED event, notifying the
application that the call was successfully
accepted and is currently in CONNECTED
state. At this point, the CIpDev object must
communicate this state to main() and get a
new instruction. The processEvent()
method returns a CALL_CONNECTED
value to main().

5. main() calls the collectPasscode() method
on the object, causing the object to play a
greeting and then enter a “get DTMF”
state. When the object collects all the digits
in the passcode or a timer expires, it
returns a DIGITS_RECEIVED value to main()
and waits for further commands or events.

6. main() calls the addToConference(evtDev)
method of the CConfManager class,
passing the connected IP object as an
argument. CConfManager checks the
passcode collected by the IP device, and if
it is valid, adds the device to a conference
with this passcode, or creates a new one.

7. Upon receiving the GCEV_DISCONNECTED
event, the CIpDev state machine calls
gc_DropCall() and gc_ReleaseCall() on the
event object, and returns the
USER_DROPPED value to main().

Application Note

4

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

8. main() instructs the ConfManager to remove
the channel from the appropriate
conference, calling the
removeFromConference() method of the
ConfManager class object. The conference
bridge number member data is reset to -1
for the disconnected device, and the times-
lot is freed via dti_Unlisten(). The channel
then enters the NULL state and is ready to
accept a new call.

Running HmpConfDemo
This section contains information about
preparing the configuration file, entering a
conference, accessing administrative features,
and muting a phone set during a conference.

Preparing the Configuration File
Before running HmpConfDemo, edit its config-
uration file and make any necessary changes.
Then save the file to the same directory that
contains the HmpConfDemo executable file
(HmpConfDemo.exe).

Figure 1 is a sample configuration file. Spacing
and tabs have been altered for readability, and
may not be shown with technical accuracy.
Wording of notes may differ.

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

5

Application Note

Application Note

6

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

NumberOfChannels = 4 ! Maximum number of IP channels in use
! Default is all available channels

MaxLogSize = 100000 ! Maximum number of lines in a log file
! Default is 100,000 lines

PrintLevel = 1 ! Printout verbosity
! 0=All, 1=App, 2=Events, 3=Warnings, 4=Error

LogFileName = HmpDemo.log ! Default name = HmpDemo.log
WelcomeFileName = welcome.pcm
BadPasscodeFileName = invalid.pcm
CallLaterFileName = bye.pcm
GoodByeFileName = bye.pcm

! Setting PrintLevel = 0 may affect performance if demo is used under a
! heavy load

[Board Parameters]
ActiveTalker = Yes
ATInterval= 5 ! Active talker interval in 100 ms units
DTMFClamping = Yes
MuteDigits = *6

! Number of individual volume controls is not supported in HMP 1.1 beta

VolumeControl = Yes
VolumeUp = 3
VolumeDown = 9
VolumeReset = 0

! Conference Information Sections
! Header Format: [Conference xxx] where xxx is a unique decimal number
! (bridge number)
! Passcode field is mandatory and must be a unique conference ID
! All other values default to “No”

[Conference 12]
Passcode = 12345
DetectDigits = No ! Triggers DCBEV_DIGIT event notification
EchoCanceler = No

[Conference 6]
Passcode = 22345
DetectDigits = No
EchoCanceler = No

[Conference 4]
Passcode =12347

[Conference 7]
Passcode = 569
DetectDigits = Yes
EchoCanceler = No

Figure 1. Sample Configuration File

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

7

Application Note

Entering a Conference
To enter a conference, use the following
procedure:
1. Access the directory which contains

HmpConfDemo, and double-click on the
HmpConfDemo.exe file.

2. Make an IP call to the HmpConfDemo
using an IP address of the host PC on
which the demo is running.

3. Enter the passcode for the conference that
you wish to enter by using the dial pad on
your IP phone. Conference passcodes are
set up in the configuration file. For exam-
ple, several conferences are set up in the
sample configuration file in Figure 1.
Conference 12 requires passcode 12345,
and Conference 6 requires passcode
22345.

When a valid passcode is entered, you will be
placed into the appropriate conference.

Accessing Administrative Features
Function keys are used to access the features
of HmpConfDemo. The function keys are set
up as follows:

F2
Updates the settings in the configuration file
while the conferencing application is running.
Edit the configuration file, and then press the
F2 key to submit it to the application. The
following parameters may be updated while
the application is running:

Application-Level
■ Path and filenames for audio files for

welcome, invalid passcode, call later, and
goodbye messages

■ Log file and console information verbosity

Board-Level
■ DTMF digit to mute participants

(enable/disable muting)

Single Conference
■ DTMF detection during conference

(enable/disable)

■ Echo cancellation (on/off)

Changing passcode and bridge number
information during a conference will not affect

the conference in progress, but will be
recognized by the application when a
newcaller attempts to enter the conference
with the updated passcode.

F3
Retrieve information about the active talker.

F4
Change log and print level using the following
settings:
0 = All messages
1 = API calls
2 = Events
3 = Warnings
4 = Errors
5 or above = None

F5
Display application statistics. The following
statistics will be displayed:
■ Number of conferences currently in progress

■ Number of participants in each conference

■ Number of conference resources currently
available

F6
Start monitoring. User will be prompted to
enter the bridge number of a conference to be
monitored. Conference bridge numbers are
displayed in the upper console window or can
be accessed via the F5 function key.

When a bridge number is entered, the
application will add a media resource to the
conference (if one is available) in receive-only
mode and will start recording a file called
Conf_xxx.pcm, where xxx is the conference
bridge number.

F7
Stop recording and remove the monitor from a
conference.

F8
Stop a single conference. User will be prompt-
ed for the bridge number of the conference to
be stopped.

F9
Stop all conferences. Pressing this function
key will end all conferences that are currently
in progress and free all resources. Calls will not
be dropped.

F10
Exit the application.

Muting a Phone Set
To enable or disable muting for a phone set
during a conference, press “*6” on the dial
pad. The default digits for this function may be
changed by editing the configuration file.

For More Information
Information about obtaining a copy of Intel
NetStructure Host Media Processing
(HMP) software can be found at
http://www.intel.com/network/csp/
products/hmp/8399web.htm.

More detailed information about HMP
software release 1.1 is available at
http://www.intel.com/network/
|csp/products/8762web.htm.

A reference design guide, which includes
information about building interactive
voice response (IVR) applications with
HMP software, can be found at
http://resource.intel.com/telecom/support/
appnotes/an03002/index.htm.

Appendix A: List of Defaults
This appendix contains a list of hard-coded
default values for omitted or misspelled
parameters in the configuration file of
HmpConfDemo. The same defaults are used if
the application cannot find, read, or parse the
configuration file.

Default passcodes and their corresponding
bridge numbers are listed in Table 2.

Passcodes Bridge Numbers

12345 1

23456 2

34567 3

45678 4

56789 5

67890 6

78901 7

Table 2. Passcodes and bridge numbers

Default parameter settings are listed below by
type.

Application-Level
■ Number of simultaneous calls = 32

■ Path and filenames for audio files messages:
— Welcome = welcome.pcm in current

directory
— Invalid Passcode = invalid.pcm in current

directory
— Call Later = bye.pcm in current directory
— Goodbye = bye.pcm in current directory

■ Path and filename for application log file =
HmpDemo.log in current directory

■ Maximum size of log file = 100,000 lines

■ Log file and console information
verbosity = 0

Board-Level
■ Active talker feature = disable

■ Active talker detection interval = 3
(in 100 ms per unit)

■ DTMF clamping = disable

■ DTMF digit to enable/disable muting for
participants = *6

Single-Conference
■ Passcode = see Table 2

■ DTMF detection during conference = disable

■ Echo cancellation = off

Building Conferencing Applications Using Intel® NetStructure™ Host Media Processing Software

8

Application Note

http://www.intel.com/network/csp/
http://www.intel.com/network/
http://resource.intel.com/telecom/support/

To learn more, visit our site on the World Wide Web at http://www.intel.com.

1515 Route Ten
Parsippany, NJ 07054
Phone: 1-973-993-3000

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF
INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Intel products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.

Intel may make changes to specifications, product descriptions, and plans at any time, without notice.

Intel, Intel Dialogic, Intel NetStructure, Pentium, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

*Other names and brands may be claimed as the property of others.

Printed in the USA Copyright © 2003 Intel Corporation All rights reserved. e Printed on recycled paper. 12/03 00-8896-001

http://www.intel.com

