

Dialogic® PowerMedia™ XMS JSR 309
Connector Software Release 4.1
Installation and Configuration Guide

with Oracle Communications Converged Application Server

May 2015 Rev 1.3

 www.dialogic.com

Copyright and Legal Notice

Copyright © 2014-2015 Dialogic Corporation. All Rights Reserved. You may not reproduce this document in whole

or in part without permission in writing from Dialogic Corporation at the address provided below.

All contents of this document are furnished for informational use only and are subject to change without notice and

do not represent a commitment on the part of Dialogic Corporation and its affiliates or subsidiaries ("Dialogic").

Reasonable effort is made to ensure the accuracy of the information contained in the document. However, Dialogic

does not warrant the accuracy of this information and cannot accept responsibility for errors, inaccuracies or

omissions that may be contained in this document.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH DIALOGIC® PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY

THIS DOCUMENT. EXCEPT AS PROVIDED IN A SIGNED AGREEMENT BETWEEN YOU AND DIALOGIC, DIALOGIC

ASSUMES NO LIABILITY WHATSOEVER, AND DIALOGIC DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO SALE AND/OR USE OF DIALOGIC PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO

FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY INTELLECTUAL PROPERTY

RIGHT OF A THIRD PARTY.

Dialogic products are not intended for use in certain safety-affecting situations. Please see

http://www.dialogic.com/company/terms-of-use.aspx for more details.

Due to differing national regulations and approval requirements, certain Dialogic products may be suitable for use

only in specific countries, and thus may not function properly in other countries. You are responsible for ensuring

that your use of such products occurs only in the countries where such use is suitable. For information on specific

products, contact Dialogic Corporation at the address indicated below or on the web at www.dialogic.com.

It is possible that the use or implementation of any one of the concepts, applications, or ideas described in this

document, in marketing collateral produced by or on web pages maintained by Dialogic may infringe one or more

patents or other intellectual property rights owned by third parties. Dialogic does not provide any intellectual

property licenses with the sale of Dialogic products other than a license to use such product in accordance with

intellectual property owned or validly licensed by Dialogic and no such licenses are provided except pursuant to a

signed agreement with Dialogic. More detailed information about such intellectual property is available from

Dialogic's legal department at 6700 de la Cote-de-Liesse Road, Suite 100, Borough of Saint-Laurent, Montreal,

Quebec, Canada H4T 2B5. Dialogic encourages all users of its products to procure all necessary

intellectual property licenses required to implement any concepts or applications and does not condone

or encourage any intellectual property infringement and disclaims any responsibility related thereto.

These intellectual property licenses may differ from country to country and it is the responsibility of

those who develop the concepts or applications to be aware of and comply with different national

license requirements.

Dialogic, Dialogic Pro, Dialogic Blue, Veraz, Brooktrout, Diva, BorderNet, PowerMedia, ControlSwitch, I-Gate, Mobile

Experience Matters, Network Fuel, Video is the New Voice, Making Innovation Thrive, Diastar, Cantata, TruFax,

SwitchKit, Eiconcard, NMS Communications, SIPcontrol, Exnet, EXS, Vision, inCloud9, NaturalAccess and Shiva,

among others as well as related logos, are either registered trademarks or trademarks of Dialogic Corporation and

its affiliates or subsidiaries. Dialogic's trademarks may be used publicly only with permission from Dialogic. Such

permission may only be granted by Dialogic's legal department at 6700 de la Cote-de-Liesse Road, Suite 100,

Borough of Saint-Laurent, Montreal, Quebec, Canada H4T 2B5. Any authorized use of Dialogic's trademarks will be

subject to full respect of the trademark guidelines published by Dialogic from time to time and any use of Dialogic's

trademarks requires proper acknowledgement.

The names of actual companies and products mentioned herein are the trademarks of their respective owners.

Any use case(s) shown and/or described herein represent one or more examples of the various ways, scenarios or

environments in which Dialogic® products can be used. Such use case(s) are non-limiting and do not represent

recommendations of Dialogic as to whether or how to use Dialogic products.

This document discusses one or more open source products, systems and/or releases. Dialogic is not responsible

for your decision to use open source in connection with Dialogic products (including without limitation those

referred to herein), nor is Dialogic responsible for any present or future effects such usage might have, including

without limitation effects on your products, your business, or your intellectual property rights.

http://www.dialogic.com/company/terms-of-use.aspx
http://www.dialogic.com/

3

Table of Contents

1. JSR 309 Connector Requirements ... 6

2. Contents of the Distribution .. 7
Distributed Files .. 7

3. Installation and Configuration .. 8
Preparing the J2EE Converged Application Server .. 8
Installing the JSR 309 Connector ... 8
Step 1 – Installation and Configuration of JSR 309 Connector 8

Configure JSR 309 Connector Required Third-Party Libraries 9
Configure JSR 309 Connector Properties File ... 9
Modify AS Startup Script ... 9

Step 2 – Installation and Configuration of JSR 309 Connector Demo 10
Configure JSR 309 Connector Demo Properties File .. 10
Modify AS Startup Script ... 10
Deploy JSR 309 Connector Demo Application .. 11

Step 3 – Proper Configuration of PowerMedia XMS ... 20
PowerMedia XMS Web Admin Configuration .. 21

Step 4 – Verification of JSR 309 Connector using Demo Application 23

4. Test Servlets ... 24
Test Servlets Overview .. 24
Running the Test Servlets ... 24

DlgcPlayerTest ... 24
DlgcDtmfPromptAndCollectTest .. 24
DlgcRecorderTest ... 25
DlgcDtmfAsyncTest ... 25
Conference Demos ... 26
JMCConferenceServlet ... 26
DlgcReferenceConferenceWithOutBCallServlet .. 27
DialogicBridgeConference .. 28
DlgcEarlyMediaBridgeDemo .. 28

5. Troubleshooting .. 31
Logging ... 31
SIP Errors .. 31

6. Building and Debugging Sample Demos in Eclipse IDE 32
Prerequisites .. 32
Creating Build Environment .. 32
Building the Project ... 47
Configuring Eclipse Project and OCCAS Deployed Application for Remote Debugging 48
Eclipse Project Remote Debugging Configuration .. 49

4

7. Appendix A: JSR 309 Connector Environment Setup 52
Installing and Configuring the OCCAS ... 52

Pre-Installation Setup ... 52
JDK Setup ... 53
OCCAS Installation ... 53
OCCAS Configuration .. 63
OCCAS Startup .. 73
Firewall Configuration ... 75
OCCAS Verification ... 80

8. Appendix B: Redundant Media Servers Configuration 81

9. Appendix C: Updating the JSR 309 Connector ... 83

5

Revision History

Revision Release Date Notes

1.3 (Updated) May 2015 Installation and Configuration:

 Added Configuration of WAR File via AS Web

Admin Console to the Deploy JSR 309
Connector Demo Application section.

1.3 April 2015 Updates to support JSR 309 Connector Release 4.1.

Updates to support log4j2 implementation.

JSR 309 Connector Requirements:

 Updated the supported version to PowerMedia
XMS Release 2.4 Service Update 1.

Contents of the Distribution:

 Updated the Distributed Files section.

Appendix C: Updating the JSR 309 Connector:

 Updated with details on the MANIFEST.MF file.

1.2 February 2015 Appendix B: Redundant Media Servers Configuration:

 Updated with details on hot active/standby
redundancy.

Appendix C: Updating the JSR 309 Connector:

 Added new section.

1.1 November 2014 Updates with miscellaneous fixes.

1.0 October 2014 Initial version of document.

Last modified: May 2015

6

1. JSR 309 Connector Requirements

The following requirements are needed to be in place before installing the JSR 309

Connector:

 A functional Oracle Communications Converged Application Server (OCCAS) platform
for development and testing.

The JSR 309 Connector has been tested with the OCCAS version 5.1.0 Application

Server.

 Install required Oracle patch:

18135712 SU Patch [4Q2T]: SIP RP 5.1.0.0.2 - Do Async actions not always

running if the action is created within a timer. (Patch)

 A functional PowerMedia XMS Release 2.4 Service Update 1 system.

Note: Refer to Proper Configuration of PowerMedia XMS for additional information.

 SIP phones or soft clients.

7

2. Contents of the Distribution

This section lists and describes the files in the JSR 309 Connector distribution.

Distributed Files

The JSR 309 Connector distribution consists of a single TAR file:

Oracle-msc#.#.tar

This package contains the following structure:

JSR 309 Connector Files Description

DIR:

/DlgcJSR309/application/

CONTENTS:

deploymentDescriptor/

sample-src/

build.xml

dlgmsc_tests.war

Directory that contains a deployable web
archive that can be used to test the

supported functionality. The WAR file

implements several test servlets. Refer to
Test Servlets for more information.

It also contains the test servlets source

files and build environment in order to
simply create demo application project.

DIR:

/DlgcJSR309/lib/

CONTENTS:

dlgmsc.jar

msmltypes.jar

dlgsmiltypes.jar

<third-party required files>

Directory that contains the JSR 309
Connector implementation for PowerMedia

XMS which consists of a sets of 3 JAR files:
dlgmsc.jar, msmltypes.jar, and

dlgcsmiltypes.jar.

Directory also contains additional third-
party libraries required by JSR 309

Connector.

DIR:

/DlgcJSR309/properties/

CONTENTS:

dlgc_JSR309.properties

dlgc_demos.properties

log4j2.xml

Directory that contains the properties files

used to set up configuration for JSR 309
Connector and provided demos as well as

xml configuration file for logging

framework.

DIR:

/DlgcJSR309DemoPrompts/

CONTENTS:

prompts.tar

JSR 309 Connector prompts used by demo

application. Refer to Installing the Demo
Prompts for further details.

8

3. Installation and Configuration

This section describes how to install and use the JSR 309 Connector.

For system requirements and supported platforms, see JSR 309 Connector Requirements.

Preparing the J2EE Converged Application Server

The JSR 309 Connector has been deployed and tested on OCCAS 5.1.0. If you are not
familiar with OCCAS or how to set it up, refer to Appendix: JSR 309 Connector Environment

Setup for guidance and detailed instructions on how to get you started.

Installing the JSR 309 Connector

The JSR 309 Connector is a library used by an application which needs to be configured
within Application Server itself.

The JSR 309 Connector demo applications provided with the distribution are used to

illustrate some functionality of the JSR 309 Connector. Refer to Test Servlets section for
further details.

The following steps are necessary for JSR 309 Connector and demo application installation

for correct operation:

 Step 1 – Installation and Configuration of JSR 309 Connector

 Step 2 – Installation and Configuration of JSR 309 Connector Demo

 Step 3 – Proper Configuration of PowerMedia XMS

 Step 4 – Verification of JSR 309 Connector using Demo Application

You need to extract the distribution package as various components (files) will be needed to

correctly complete each step. Refer to Contents of the Distribution which describes the
contents in detail.

Step 1 – Installation and Configuration of JSR 309

Connector

Simply place the package TAR file on OCCAS Linux server and run the following command:

tar –xvf Oracle-msc#.#.tar

This will create two directories, “DlgcJSR309” and “DlgcJSR309DemoPrompts”, as described
in Contents of the Distribution.

Note: These directories are referenced throughout this document for content required by

JSR 309 Connector.

Follow these steps to properly configure JSR 309 Connector:

 Configure JSR 309 Connector required third-party libraries.

 Configure JSR 309 Connector properties file.

 Modify AS startup script.

9

Configure JSR 309 Connector Required Third-Party Libraries

Copy all the extracted content of the distribution package from the “DlgcJSR309/lib”

directory to the OCCAS “<Domain Location>/lib” directory:

Note: “<Domain Location>” refers to the domain path as specified during OCCAS
installation.

/root/Oracle/Middleware/user_projects/domains/base_domain/lib/

Configure JSR 309 Connector Properties File

JSR 309 Connector is configured by two property files:

 dlgc_JSR309.properties – used to configure the location (IP addresses and ports) of

the OCCAS environment using JSR 309 Connector and of PowerMedia XMS platform.

 log4j2.xml – used for connector logging using Simple Logging Facade framework

implementation of log4j2.

Note: You can configure logging in the log4j2.xml file. By default, logging is
configured to use INFO level notification and directs logging output to the Console as

well as to a separate dlgmsc.log file which can be found under “<Domain

Location>/bin” directory.

Follow these steps to set up the two properties file:

1. Copy the dlgc_JSR309.properties and log4j2.xml files from “DlgcJSR309/properties”

directory to the OCCAS “<Domain Location>/config” directory.

2. Edit the dlgc_JSR309.properties file according to your OCCAS and PowerMedia XMS
configuration.

 The changes will include the OCCAS IP address and port of SipServlet

container running the JSR 309 Connector.

 Changes will also include the PowerMedia XMS IP address and port.

Modify AS Startup Script

 Edit the <Domain Location>/bin/startWebLogic.sh OCCAS startup script and add the

lines in bold. Additionally, the OCCAS startup section also needs to be edited in
bold.

…

Connector's address information (Typically same as the SipServlet container) your OCCAS IP Address

connector.sip.address=xxx.xxx.xxx.xxx

connector.sip.port=5060

….

#Media Server

mediaserver.msType=XMS

mediaserver.1.sip.address=xxx.xxx.xxx.xxx

mediaserver.1.sip.port=5060

….

…..
JAVA_OPTIONS="${SAVE_JAVA_OPTIONS}"

SAVE_JAVA_OPTIONS=""

CLASSPATH="${SAVE_CLASSPATH}"

#Dialogic additions

export DLG_PROPERTY_FILE=${DOMAIN_HOME}/config/dlgc_JSR309.properties

LOG4J_OPTIONS="-Dlog4j.configurationFile=${DOMAIN_HOME}/config/log4j2.xml"

CLASSPATH="${SAVE_CLASSPATH}:${ORCL_HOME}/server/modules/mscontrol.jar:${ORCL_HOME}/server/lib/jsr309-descriptor-binding.jar"

SERIALIZATION_VALUE=false

SAVE_CLASSPATH=""

trap 'stopAll' 1 2 3 15
…..

10

 Now, save the changes and start the WebLogic Server. At this point, the JSR 309

Connector is now configured for a use by an application.

Step 2 – Installation and Configuration of JSR 309
Connector Demo

At this point, an application can take advantage of JSR 309 Connector and use its resources

for media related functionality. The JSR 309 Connector package provides a demo application
which uses JSR 309 Connector to illustrate various media functionalities. This step will

illustrate how to install and configure JSR 309 Connector demo application. Step 3 will
illustrate how to verify that the demo application works with JSR 309 Connector and

communicates correctly with PowerMedia XMS.

Follow these steps to set JSR 309 Connector demo application:

1. Configure JSR 309 Connector Demo properties file.

2. Modify AS startup script.

3. Deploy JSR 309 Connector Demo application.

Configure JSR 309 Connector Demo Properties File

In this step, verify that the demo application works with JSR 309 Connector and
communicates correctly with PowerMedia XMS.

 From the distribution package under “DlgcJSR309/properties”, copy

dlgc_demos.properties file to the OCCAS “<Domain Location>/applications”
directory. The demo properties file has various settings for various sample

applications that can be modified. For detailed information on various configurations,
refer to the descriptions of each sample application in Test Servlets.

Modify AS Startup Script

 Edit the <Domain Location>/bin/startWebLogic.sh OCCAS startup script and add the
lines in bold:

………

echo "starting weblogic with Java version:"

${JAVA_HOME}/bin/java ${JAVA_VM} –version

if ["${WLS_REDIRECT_LOG}" = ""] ; then

 echo "Starting WLS with line:"

 echo "${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS} ${LOG4J_OPTIONS} -

Dlog4j.debug -Dwlss.local.serialization=${SERIALIZATION_VALUE} -Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS}

${PROXY_SETTINGS} ${SERVER_CLASS}"

 ${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS} ${LOG4J_OPTIONS} -Dlog4j.debug -

Dwlss.local.serialization=${SERIALIZATION_VALUE} -Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS}

${PROXY_SETTINGS} ${SERVER_CLASS}

else

 echo "Redirecting output from WLS window to ${WLS_REDIRECT_LOG}"

 ${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS} ${LOG4J_OPTIONS} -Dlog4j.debug -

Dwlss.local.serialization=${SERIALIZATION_VALUE} -Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS}

${PROXY_SETTINGS} ${SERVER_CLASS} >"${WLS_REDIRECT_LOG}" 2>&1

fi

stopAll
……..

…..
JAVA_OPTIONS="${SAVE_JAVA_OPTIONS}"

SAVE_JAVA_OPTIONS=""

CLASSPATH="${SAVE_CLASSPATH}"

#Dialogic additions

export DIALOGIC_DEMO_PROPERTY_FILE=${DOMAIN_HOME}/applications/dlgc_demos.properties

export DLG_PROPERTY_FILE=${DOMAIN_HOME}/config/dlgc_JSR309.properties

LOG4J_OPTIONS="-Dlog4j.configurationFile=${DOMAIN_HOME}/config/log4j2.xml"

CLASSPATH="${SAVE_CLASSPATH}:${ORCL_HOME}/server/modules/mscontrol.jar:${ORCL_HOME}/server/lib/jsr309-descriptor-binding.jar"

SERIALIZATION_VALUE=false

SAVE_CLASSPATH=""

trap 'stopAll' 1 2 3 15
…..

11

Deploy JSR 309 Connector Demo Application

 From the distribution package under the “DlgcJSR309/application” directory, copy

dlgmsc_tests.war file to the OCCAS “<Domain Location>/applications” directory.

 Next, the JSR 309 Connector demo application needs to be deployed in the OCCAS.
To do so, proceed to the following instructions.

Configuration of WAR File via AS Web Admin Console

Make sure that JSR 309 Connector demo application WAR file provided with distribution

exists in OCCAS under “<Domain Location>/application” directory.

Now, access the Administration Console through web browser at:

http://<as_ip_address>:7001/console

Use the username/password as set during configuration.

The following is used as an example:

Name: weblogic

User password: Webl0gic!! (“0” is a zero)

Note: The password is as defined during OCCAS installation.

Go to Deployments under Domain Structure, then click on Lock & Edit.

12

Make sure the existing services are displayed, as shown above, to verify that the OCCAS

components have started.

If OCCAS was installed in Production Mode, an additional process will need to be followed
when making changes to the configuration and setup. This additional process includes Lock

& Edit to change the configuration and complete the required changes, followed by using

Release Configuration.

If OCCAS was installed in Development Mode, the process is done automatically. Skip the

steps that discuss Lock & Edit, Release Configuration, and activation of an application.

The following examples are based on OCCAS being installed in Production Mode.

13

Click on Lock & Edit.

Click on Install under Deployments.

Navigate to “<Domain Location>/applications” under Current Location.

Select dlgmsc_tests.war, then click on Next.

14

Select Install this deployment as an application, then click on Next.

Select I will make the deployment accessible from the following location, then click
on Next.

15

Click on Finish.

16

Click on Save.

17

Click on Activate Changes once the “Settings updated successfully” message appears.

Note: This step is not applicable when OCCAS was installed in Development Mode.

Make sure the “All changes have been activated. No restarts are necessary” message

appears.

18

Go back to Deployments under Domain Structure.

The Deployments along with its State and Health are displayed. Verify that the installed
dlgmsc_tests.war application is in Prepared state.

19

Once in Prepared state, select dlgmsc_tests.war application and click on Start, then click
on Servicing all requests.

Note: This step is not applicable when OCCAS was installed in Development Mode.

Click on Yes.

20

Make sure the “Start requests have been sent to the selected Deployments” message

appears. Verify that deployed dlgmsc_tests.war application is in Active state.

Step 3 – Proper Configuration of PowerMedia XMS

In order to verify the correct JSR 309 Connector installation with provided JSR 309
Connector demos, you will need to correctly configure PowerMedia XMS Media Server. This

includes:

 PowerMedia XMS Web Admin Configuration.

o Allowing Absolute Paths

o Installing JSR 309 Connector Demo Prompts

 Demo required prompts installed on PowerMedia XMS itself (optional).

Note: Only needed if JSR 309 Connector demo application is going to be used as it

depends on these prompts to be installed on PowerMedia XMS.

21

PowerMedia XMS Web Admin Configuration

Allowing Absolute Paths

JSR 309 Connector uses Native MSML interface to PowerMedia XMS Media Server. You need
to verify that PowerMedia XMS is indeed configured for “Native” mode.

Note: In PowerMedia XMS Release 2.1 and later, “Native” mode is the mode configured by

default when PowerMedia XMS gets installed. Also, it is strongly recommended that the
latest version of PowerMedia XMS be used.

Now, under the Media menu, click on Media Configuration tab. The Allow Absolute

Paths field must be set to YES.

Once appropriate changes are made, click the Apply button which will commit the changes.
Once changes are applied, you will be asked to restart PowerMedia XMS. This step is not yet

required since we are going to be changing more configuration parameters below.

22

Installing JSR 309 Connector Demo Prompts

Custom prompts need to be installed on PowerMedia XMS as the various Dialogic demos will

require them to work.

Once installed, they should appear in the Media menu under the Media Management tab
as shown below in the highlighted fields:

You can locate and install the demo prompts by performing the following:

1. Copy the prompts.tar file inside the “<Release Package>/DlgcJSR309DemoPrompts”

directory to the PowerMedia XMS system under the
“/var/lib/xms/media/en_US/verification” directory.

2. Untar file using the command:

tar -xvf <file_name>.tar

23

Step 4 – Verification of JSR 309 Connector using Demo

Application

With default dlgc_demos.properties file, you can use a simple DlgcPlayerDemo to verify

the proper connector installation and operation. This demo simply answers an incoming call

and uses JSR 309 Connector to request media resources from PowerMedia XMS in order to
play an audio file.

Here are the steps on running DlgcPlayerDemo for verification.

1. Have a SIP client configured for supported audio codec.

2. Place a call into OCCAS Application Server with following URI:

DlgcPlayerDemo@<as_ip_address>

3. With successful configuration, user should hear a verification prompt being played

out.

24

4. Test Servlets

This section describes the test servlets (basic sample applications) and requirements for

running test servlets in the JSR 309 Connector.

Test Servlets Overview

Test Servlets, or sample applications, are included as part of distribution. They illustrate the

use of the JSR 309 Connector. These test servlets are included in the dlgmsc_tests.war. For

installation instructions and any additional requirements for running test servlets, refer to
Installation and Configuration of JSR 309 Connector Demo and to Proper Configuration of

PowerMedia XMS.

Running the Test Servlets

When using any standard SIP phone a special SIP URI will be used to initiate each test

servlet.

DlgcPlayerTest

This test servlet plays a PowerMedia XMS pre-set prompt.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcPlayerDemo. Make sure that the Web Application Server is
running the dlgmsc_tests.war application.

Using the demo property file, set the following:

player.test.prompt=

For example:

player.test.prompt=file:////var/lib/xms/media/en_US/verification/greeting.wav

The player will play this prompt. Make sure that the prompt file exists in the Media Server.

To test the application, dial the following:

DlgcPlayerDemo@<as_ip_address>

DlgcDtmfPromptAndCollectTest

This test servlet plays a prompt and collects DTMF digits.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcPromptCollectDemo. Make sure that the Web Application
Server is running the dlgmsc_tests.war application.

The DlgcPromptCollectDemo can be controlled using the demo property file as follows:

 The detectOnlyTest reads the number of signals property value and sends the

pattern x (times number of signals). Note that no prompt is played. The following
example generates a pattern to match of any five (5) DTMF entries:

signalDetector.test=detectOnlyTest

signalDetector.number_of_signals=5

 The detectPromptCollectTest plays a prompt and looks for a given pattern. It does

not make use of the number of signals property.

signalDetector.test=detectPromptCollectTest

signalDetector.match_pattern=min=1;max=5;rtk=#

25

 The detectCollectWithPatternTest does not prompt the user and only uses the

match_pattern.

signalDetector.test=detectCollectWithPatternTest

signalDetector.match_pattern=min=1;max=5;rtk=#

Note 1: You can configure the signal detector with the following properties (for
example, the timeout values are based in milliseconds units):

signalDetector.initial_digit_timeout=5000

signalDetector.inter_digit_timeout=5000

signalDetector.max_duration=10000

Note 2: For the test that plays a prompt, you can control a loop (or how many times
the test repeats the prompt and collect) by controlling the following property:

signalDetector.loopCounter=2

To test the application, dial the following:

DlgcPromptCollectDemo@<as_ip_address>

DlgcRecorderTest

This test servlet records a greeting.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcRecorderDemo. Make sure that the Web Application Server is
running the dlgmsc_tests.war application.

In the SIP phone, select your newly created test contact. You are prompted to record your

greeting at the tone. After the tone, say your greeting, and enter #000 to play your
greeting.

After the greeting is played back, the application completes by hanging up the phone. If you

do not enter #000, the greeting continues to record until the timeout is reached.

The recording demo can be controlled in the demo property file by configuring the following
record properties:

record.test.file=file:////tmp/recorder_jsr309_test_demo.ulaw

record.test.minDuration=6000

record.test.maxDuration=60000

record.test.initialTimeout=7000

record.test.finalTimeout=4000

record.test.silenceTerminationFlag=true

To test the application, dial the following:

DlgcRecorderDemo@<as_ip_address>

DlgcDtmfAsyncTest

This test servlet illustrates the asynchronous DTMF capabilities.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcAsyncDtmfDemo. Make sure that the Web Application Server is
running the dlgmsc_tests.war application.

In the SIP phone, select your newly created test contact. Notice that there are no prompts.

You will be connected. The application waits for you to press DTMF digits. For each DTMF
pressed, the application will receive the DTMF and print the collected DTMF to the screen.

Selecting the number 0 hangs up the connection.

To test the application, dial the following:

DlgcAsyncDtmfDemo@<as_ip_address>

26

Conference Demos

The following table depicts the conference demos that are delivered with JSR 309

Connector:

Demo Name Functionality Requires

JMCConferenceServlet Demonstrates how

to create and
manage multiple

conferences.

Media files need to be

installed in the
PowerMedia XMS for

menu to work.

DlgcAvLayoutConferenceDemo Implements an

advanced
conference.

Media files need to be

installed in the
PowerMedia XMS for

menu to work. The

demo property file
must be configured.

DialogicBridgeConference Shows how to

create a two leg

conference without
using a mixer.

Media files need to be

installed in the

PowerMedia XMS for
menu to work.

JMCConferenceServlet

This test servlet illustrates how to create and manage multiple conferences using a mixer
control leg. A mixer control leg is an extra SIP connection used to control the conference

mixer.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone
address (i.e., URI) to DlgcMultiConferenceDemo. Make sure that the Web Application

Server is running the dlgmsc_tests.war application.

In the SIP phone, select your newly created test conference contact. Notice that you will
need at least two SIP phones. The first connection entering the conference will not hear

anything until the other legs join in.

This conference performs the following:

1. Establishes a network connection and joins it with a media group.

2. Plays a prompt for a new number (conference pin) and collects signals. Any pin
number can be provided. Initially no conferences exist. Conferences are created as

users call in and provide pin numbers. Callers will only hear other callers who provide
the same pin number.

3. Creates a conference if a new pin is used, or adds a leg to an existing conference.

To test the application, dial the following:

DlgcMultiConferenceDemo@<as_ip_address>

27

DlgcReferenceConferenceWithOutBCallServlet

This test servlet illustrates how to implement an advanced conference that does not require

a mixer control leg. The legs are connected directly into a conference without requiring any

initial IVR functionality.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcAvLayoutConferenceDemo. Make sure that the Web

Application Server is running the dlgmsc_tests.war application.

In the SIP phone, select your newly created test conference contact. Notice that you will

need at least two SIP phones. The first connection entering the conference will not hear

anything until the other legs join in.

This simple conference performs the following:

1. Can join multiple legs into a conference.

2. Once in conference, the user can enter *00 to hear the conference menu and apply

some of the menu options.

The demo can be controlled by configuring the following properties in the demo property
file:

 Change the initial direction of legs by entering the following properties in the

application demo property file:

demos.join.direction.leg1=<duplex,recv,send>

demos.join.direction.leg1=<duplex,recv,send>

demos.join.direction.leg1=<duplex,recv,send>

 To make an outbound call, make sure you have another accessible SIP phone that

can receive calls and configure the following attributes:

application.sipTOA_Address.sip.address=146.152.245.3 # IP address of the SIP Phone

application.sipTOA_Port.sip.port=5060

application.sipTOA.sip.username=kapanga #(any name will do)

application.early_media_bridge.sip.address=146.152.122.127 #OCCAS Addr

application.early_media_bridge.sip.port=5060 #OCCAS SIP PORT

 To run a video conference, make sure you set the following configuration:

media.mixer.mode=AUDIO_VIDEO # possible values AUDIO,AUDIO_VIDEO

media.mixer.conf.video.size=VGA # possible values VGA, 720p

media.mixer.conf.recordfile=file:////tmp/confRecording # recording the conference file

full path. This also works for audio only conference.

Note: To play the conference recording after the recording is completed, change the

following attribute to point to the recording path:

player.test.prompt=file:////tmp/confRecording then run DlgcPlayerDemo

To test the application, dial the following:

DlgcAvLayoutConferenceDemo@<as_ip_address>

28

DialogicBridgeConference

This test servlet illustrates how to implement a simple conference that does not require a

mixer, and that has two legs directly joined into it.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone
address (i.e., URI) to DlgcBridgeDemo. Make sure that the Web Application Server is

running the dlgmsc_tests.war application.

In the SIP phone, select your newly created test conference contact. Notice that you will
need at least two SIP phones. The first connection entering the conference will not hear

anything until the other legs join in.

This simple conference performs the following:

 Joins two calling legs into a simple conference.

 In order for the leg to enter the bridge, each leg must enter *03 after making the
call.

To test the application, dial the following:

DlgcBridgeDemo@<as_ip_address>

DlgcEarlyMediaBridgeDemo

This test servlet is similar to the DialogicBridgeConference defined above, except that it
simulates an early media scenario.

Set up your SIP phone to point to the Web Application Server. Configure the SIP phone

address (i.e., URI) to DlgcEarlyMediaBridgeDemo. Make sure that the Web Application
Server is running the dlgmsc_tests.war application.

The following sequence diagram illustrates DlgcEarlyMediaBridgeDemo:

29

30

Menu supported by DlgcEarlyMediaBridgeDemo:

*00 – Plays announcement of menu options

*77 – Plays announcement of how the demo works

*88 – Plays announcement informing the user if the application is in a bridge or mixer
conference

*99 – Transfers the two call leg from a bridge conference to a full conference using a

mixer

Note: Once in a mixer conference, the test application does not allow you to go back
to a bridge conference. The following property configuration must be set for this demo

to work:

application.sipTOA_Address.sip.address=146.152.245.3 # IP address of the SIP phone

application.sipTOA_Port.sip.port=5060

application.sipTOA.sip.username=kapanga #(any name will do)

application.early_media_bridge.sip.address=146.152.122.127 #OCCAS Addr

application.early_media_bridge.sip.port=5060 #OCCAS SIP PORT

To test the application, dial the following:

DlgcEarlyMediaBridgeDemo@<as_ip_address>

31

5. Troubleshooting

This section provides basic troubleshooting techniques for the JSR 309 Connector.

Logging

The JSR 309 Connector and sample applications generate log output to the dlgmsc.log. The
default logging level is set to INFO.

You may also need to enable logging for SIP messages in the container so that the incoming

requests that trigger the servlets are captured. You can enable SIP message logging or any
other platform related logging through the Application Server administration console.

SIP Errors

If the PowerMedia XMS returns “503 Service Unavailable”, make sure your network is

correctly set up by performing the following actions:

 Verify the available PowerMedia XMS licenses.

 Check the /etc/hosts file configuration.

 Make sure application properties file (i.e., dlgc_demos.properties) is referencing the

appropriate PowerMedia XMS and Application Server IP address and ports.

32

6. Building and Debugging Sample Demos in

Eclipse IDE

The JSR 309 Connector distribution comes with necessary configuration files and content

needed to build Dialogic sample applications. This section is going to provide the steps on
how to create, compile, build, and debug provided demo application using Eclipse IDE.

Prerequisites

User will need to have installed the following components:

 JDK 1.6.0_45

Note: Latest version of 1.6 JDK is used because this is a version supported by
OCCAS 5.1.0.

 Eclipse KDE (Eclipse Standard SDK – Kepler Service Release 2 used here).

 In order to build provided demo applications, you will need to obtain two OCCAS

5.1.0 libraries which are NOT provided with JSR 309 Connector distribution:

o javax.servlet_1.0.0.0_2-5.jar

o wlss.jar

Creating Build Environment

Follow these steps to create a Dialogic demo build environment:

1. From the distribution package, copy the “DlgcJSR309” directory and its content to a

known location on your system.

2. Copy the required Application Server Platform specific libraries into the
“DlgcJSR309/lib” directory.

3. Open Eclipse IDE and go to File > New > Java Project. The following window will

appear:

33

4. Uncheck Use default location and then click the Browse button.

34

5. Browse to the location of the copied “DlgcJSR309” directory and select the

application directory. Then, click OK.

Note: Enter any Project name you wish to use in the Project name field.

6. Now, click Finish.

35

Expanding the project in Eclipse should give you the following content:

Next, right click on the name of your project in the Package Explorer view and select

Properties.

36

To configure for ANT builder, click on Builders. Now, deselect the existing Java Builder
and click on New button.

37

Select Ant Builder and then click OK.

38

39

To name the builder, enter in a name in the Name section as shown

below:

Use the Main tab to define Buildfile and Base Directory:

 Under Buildfile, click on Browse Workspace button and select the build.xml file in

the application directory. Then, click OK:

40

Next, under Base Directory, click on Browse Workspace button and select the

application directory.

 Then, click OK.

The above changes will reflect the main configuration menu as shown below:

41

Now, select the Targets tab:

Under Auto Build, click the Set Targets button. The demo target must be selected as

illustrated below:

Then, click OK.

42

You will now be returned to Targets tab on the main configuration menu. Under During a

“Clean”, click on Set Targets button. The only target that should be selected is the clean
target.

Note: The demo target will most likely be selected by default, in which case you will need

to deselect it.

Then, click OK.

43

Once returned to Targets tab on the main configuration menu, click on Apply button:

44

Next, to select the appropriate JRE environment which will be used for this project, click

on JRE tab:

Under Runtime JRE, click on Separate JRE radio button. Then, click on Installed JREs

button:

45

Select the installed jdk1.6.0_45 file as shown above.

Note: If this version does not show under Installed JREs, click Add. Then, select

Standard VM and navigate to the location of your installed jdk1.6.0_45 file by clicking on
the Directory button.

Select the appropriate JRE and click OK:

Now you have configured the appropriate JRE to be used by this project:

Click Apply and then click OK.

46

To ensure that the newly created builder (ANT Builder) is at the top of the list, click on
ANT Builder and position it by clicking on Up button.

Next, the Java Build Path needs to be configured. Click on Java Build Path and then click

on Libraries tab:

47

Click on Add External JARs button. Locate and click on “DlgcJSR309/lib” directory. Select

all the files in that directory and click Open.

List of JAR files:

 dlgcsmiltypes.jar

 geronimo-commonj_1.1_spec-1.0.jar

 jain-sip-sdp-1.2.91.jar

 json_simple-1.1.jar

 log4j-api-2.2.jar

 log4j-core-2.2.jar

 log4j-slf4j-impl-2.2.jar

 mscontrol.jar

 msmltypes.jar

 org.osgi-3.0.0.jar

 slf4j-api-1.7.5.jar

 xbean.jar

Now, click OK. The project configuration is now concluded.

Building the Project

After a successful project installation and configuration, a project can be built. In Eclipse,
select the newly created project, then go under the Project menu and click on Build All.

Successful build content will be shown in the Console view in Eclipse:

The newly built application WAR file will be located under the

“DlgcJSR309\application\demo_app” directory named demo_app.war. In order to deploy
this application, follow the same deployment instructions as described in the Installation and

Configuration of JSR 309 Connector Demo.

48

Configuring Eclipse Project and OCCAS Deployed

Application for Remote Debugging

In order to connect the newly created project to the deployed WAR file in OCCAS 5.1.0 for

debugging purposes, developers need to follow two simple steps:

 Have Eclipse successfully build the JSR 309 Connector Demo Application WAR
file and deploy it in OCCAS 5.1.0.

 Configure OCCAS 5.1.0 for remote debugging.

o Stop OCCAS 5.1.0.

o In OCCAS 5.1.0, edit the startWeblogic.sh script file and add the

following line, enabling the remote debugging, to the startup section
as illustrated below:

DEBUG_OPTS="-Xdebug -

Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n"

Note: The socket address specified above is 8000 but any port of choice can
be used. Any port used needs to be enabled in a firewall in order to allow

communication through it.

 Start OCCAS 5.1.0 and make sure there are no errors in the console.

START WEBLOGIC

echo "starting weblogic with Java version:"

DEBUG_OPTS="-Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n"

${JAVA_HOME}/bin/java ${JAVA_VM} -version

if ["${WLS_REDIRECT_LOG}" = ""] ; then

echo "Starting WLS with line:"

echo "${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS}
${LOG4J_OPTIONS} -Dlog4j.debug -Dwlss.local.serialization=${SERIALIZATION_VALUE} -
Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS} ${PROXY_SETTINGS}

${SERVER_CLASS}"

${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS}
${LOG4J_OPTIONS} -Dlog4j.debug -Dwlss.local.serialization=${SERIALIZATION_VALUE} -
Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS} ${PROXY_SETTINGS}

${SERVER_CLASS}

else

echo "Redirecting output from WLS window to ${WLS_REDIRECT_LOG}"

${JAVA_HOME}/bin/java ${JAVA_VM} ${MEM_ARGS} -Dweblogic.Name=${SERVER_NAME} ${DEBUG_OPTS}
${LOG4J_OPTIONS} -Dlog4j.debug -Dwlss.local.serialization=${SERIALIZATION_VALUE} -
Djava.security.policy=${WL_HOME}/server/lib/weblogic.policy ${JAVA_OPTIONS} ${PROXY_SETTINGS}
${SERVER_CLASS} >"${WLS_REDIRECT_LOG}" 2>&1

fi

stopAll

49

Eclipse Project Remote Debugging Configuration

When in Eclipse with an active JSR 309 Connector demo project (as described in this
section), the remote debugging section needs to be configured in order to set up remote

debugging. In Eclipse, go to the Run menu and click on Debug Configurations:

Double click on Remote Java Application.

Specify the Name for this remote debugging configuration (for example,
JSRAppRemoteDebugging).

50

Under Connection Properties, specify the Host address, which is the IP address of OCCAS

with deployed application, to be debugged.

Also, specify the remote debug Port to be used for communication with OCCAS as defined

in the previous section.

Below is an example of what your window would look like once information is added:

Once done, click Apply and then click Debug.

OCCAS 5.1.0 needs to be running at this point. If not, Eclipse will report a connection error
message. If OCCAS is running but Eclipse is still reporting a connection error, this could be

due to either a port mismatch between Eclipse and what OCCAS was configured for or
because of firewall settings on OCCAS not allowing the specified port.

Now, open debug perspective in Eclipse (Windows > Open Perspective > Debug).

51

If nothing shows under the Debug section of a debug perspective, then a connection to

OCCAS has not been established. To connect/reconnect, go to the debug icon on the
toolbar and choose the newly created remote debugging configuration:

Once the remote debugging configuration is selected and a connection is established,
the content of the Debug window should show running threads:

Now, the Eclipse project is connected to the build application that is deployed in OCCAS

5.1.0.

52

7. Appendix A: JSR 309 Connector Environment

Setup

This section describes, in detail, how to set up the JSR 309 Connector environment:

 Installing and Configuring the OCCAS

For system requirements and supported platforms, see JSR 309 Connector Requirements.

This section does not go into details of OCCAS, but will help build an OCCAS system which
could be used for verification purposes.

Steps to complete on OS level include:

 Enable NTP (Network Time Protocol)

 Enable ports in firewall (if applicable)

Note: The ports that are required to be enabled in the firewall include SIP, TCP, and

UDP ports 5060 and 5061 as well as 7001 which will be used by OCCAS.

If you need more details on OCCAS, refer to the OCCAS installation instructions available

from www.oracle.com.

Installing and Configuring the OCCAS

This section describes the installation and configuration instructions for OCCAS 5.1.0. This
section illustrates how to install and configure OCCAS in order to be able to go to the next

step of Installing the JSR 309 Connector.

Note: If you are familiar with OCCAS or are planning to deploy on an existing OCCAS setup,
proceed to Installing the JSR 309 Connector.

Here are some highlights of the necessary steps:

 Pre-Installation Setup

 JDK Setup

 OCCAS Installation

 OCCAS Configuration

 OCCAS Startup

 Firewall Configuration

 OCCAS Verification

Pre-Installation Setup

Modify the /etc/hosts file:

xxx.xxx.xxx.xxx 'hostname'

Note: This must be the first line in the /etc/hosts file. If not, you might encounter “503

Service Unavailable” error.

Run the following command at the prompt:

service network restart

http://www.oracle.com/

53

JDK Setup

Download the latest JDK .rpm file from www.oracle.com. For example, the following setup is

based on jdk-6u45-linux-x64.rpm file.

Install the JDK .rpm file:

rpm –ivh jdk-6u45-linux-x64.rpm

Modify the .bashrc file and add the following line to match JDK install directory:

Export JAVA_HOME=/usr/java/jdk1.6.0_45

Save the .bashrc file and then execute:

source ./bashrc

This will take the changes into effect on the system.

Move the occas5.1.0.zip file into the root directory.

Unzip the occas5.1.0.zip file then proceed to OCCAS Installation.

OCCAS Installation

Install the occas510_ja_generic.jar file.

java -d64 -jar occas510_ja_generic.jar

Note: You may need to change file permissions to be able to executable it.

http://www.oracle.com/

54

Click on Next.

55

Select Create a new Middleware Home, then click on Next.

56

Deselect security updates (unless you have an account with Oracle), then click on Next.

57

Click on Next.

Click on Yes.

Click on Yes.

58

Select I wish to remain uninformed, then click Continue.

Select Typical, then click on Next.

59

Browse to the previously installed jdk1.6.0_45 directory.

Select jdk1.6.0_45 directory then click on Select.

60

Make sure the selected jdk1.6.0_45 directory is the only JDK checked. Then, click on

Next.

61

Click on Next.

Click on Next.

62

Click on Next.

At this point, OCCAS is installed. The steps in the next section will go over OCCAS

Configuration.

63

OCCAS Configuration

Select Run Quickstart, then click on Done.

64

Click on Start the configuration wizard.

65

Select Create a new WebLogic domain, then click on Next.

66

Select Generate a domain configured automatically to support the following
products and choose Oracle Communications Converged Application Server - Basic

Domain - 5.1.0.0 (occas_5.1). Then, click on Next.

67

Click on Next.

68

Specify Name and User password, then click on Next.

The following is used as an example:

Name: weblogic

User password: Webl0gic!! (“0” is a zero)

Note: A strong password is required.

69

Select Development Mode, then click on Next.

70

Click on Next.

71

Click on Create.

72

The OCCAS installation and configuration is now complete. Click on Done.

73

OCCAS Startup

To start OCCAS, go to the “<Domain Location>/bin” directory:

/root/Oracle/Middleware/user_projects/domains/base_domain/bin

Run the following command:

./startWebLogic.sh

74

Since the Development Mode installation was chosen, it is not necessary to enter

username/password during script startup. If the Production Mode installation was chosen,
you will have to specify username/password.

The following is used as an example:

Name: weblogic

User password: Webl0gic!! (“0” is a zero)

75

To verify that OCCAS is started, check if <Server started in RUNNING mode> is

displayed.

Firewall Configuration

Enable port 7001/tcp, 5060/udp, and 5061/udp in the Linux firewall.

76

Go to System > Administration and select Firewall.

77

Click on Close.

78

Select Other Ports, then click on Add button. Check the User Defined box, enter 7001

for Port/Port Range, choose tcp for Protocol, and then click OK.

Repeat the steps to add 5060 and 5061 for Port/Port Range but with udp as the
Protocol for each.

79

Click on Apply.

Click on Yes to activate the Firewall Configuration.

Now exit the Firewall Configuration.

80

OCCAS Verification

Access the Administration Console to verify the installation at:

http://<as_ip_address>:7001/console

Go to Domain Structure and click on Deployments to make sure State and Health are

similar to the screen shot above.

81

8. Appendix B: Redundant Media Servers

Configuration

The Redundant Media Server feature provided by the JSR 309 Connector supports hot

active/standby redundancy. The JSR 309 Connector allows for “n” number of PowerMedia
XMS systems to be configured where only one is an active Media Server and the rest are

considered standby. This section explains how to configure hot active/standby.

A primary (hot active) or a single (redundancy is not used) PowerMedia XMS is defined in
the dlgc_JSR309.properties file:

Redundancy configuration can be found under the “Dialogic PowerMedia XMS MS

Redundancy Configuration” section in the dlgc_JSR309.properties file:

To turn Media Server redundancy feature on the following steps need to be taken:

#################### Dialogic PowerMedia XMS MS Redundancy Configuration ######################

mediaserver.redundancy - turns redundancy feature "on" or "off"

Default - off

mediaserver.redundancy=off

Configuration of secondary set of PowerMedia XMS Media Server(s):

NOTE: Configuration of primary PowerMedia XMS Media Server is defined in

JSR 309 Connector Configuration section above as mediaserver.1.

1) Replicate the two lines below for each PowerMedia XMS used as secondary Media Server

2) change mediaserver.x to the next appropriate index

3) configure appropriate IP and PORT for each

NOTE: number of Media Servers defined below has to match mediaserver.count parameter.

mediaserver.x.sip.address=xxx.xxx.xxx.xxx

mediaserver.x.sip.port=xxxx

mediaserver.redundancy.check.interval (in milliseconds) defines a time interval used by

by JSR 309 Connector for sending a keep alive ping

Default - 5000

mediaserver.redundancy.check.interval=5000

mediaserver.redundancy.nonprimary.discover.clock.cycle defines a number of cycles to delay

keep alive ping for every secondary Media Server(s)

NOTE: cycle is used for secondary Media Servers and only used on initial discovery,

i.e., startup of JSR 309 Connector.

cycle * interval = seconds to wait before pinging secondary Media Server

Default - 1

mediaserver.redundancy.nonprimary.discover.clock.cycle=1

####### END - Dialogic PowerMedia XMS MS Redundancy Configuration #############################

#################### Dialogic PowerMedia XMS Media Server Configuration #######################

Configuration of PowerMedia XMS Media Server

mediaserver.1.sip.address=xxxx.xxxx.xxxx.xxxx

mediaserver.1.sip.port=xxxx

mediaserver.count defines the number of PowerMedia XMS Media Servers used

by the JSR 309 Connector.

Supported values:

1: Specifies single Media Server configuration (Redundancy not used)

<2-n>: Specifies ALL Media Servers to be used by connector (Redundancy ON).

NOTE: Requires Redundancy Configuration section to be configured.

Default - 1:

mediaserver.count=1

82

In the “Dialogic PowerMedia XMS Media Server Configuration” section:

 mediaserver.1.sip.address and mediaserver.1.sip.port need to be configured for hot
active Media Server.

 mediaserver.count needs to specify a total number of Media Servers to be used by a

connector (one designated as active hot and others designated as active standbys).

For example, if there are 4 Media Servers to be used where one of them is hot active
and other 3 are considered hot standbys mediaserver.count needs to be set to 4 (1

hot active and 3 hot standbys).

In the “Dialogic PowerMedia XMS MS Redundancy Configuration” section:

 mediaserver.redundancy needs to be set to “on”.

 mediaserver.x.sip.address/port set of parameters need to be configured for hot
standby Media Servers where x is from 2-4 (if total of 4 Media Servers are used).

Optional:

 mediaserver.redundancy.check.interval parameter defines a time interval in
milliseconds for the JSR 309 Connector to send a keep alive ping to all configured

Media Servers.

Default - 5000

 mediaserver.redundancy.nonprimary.discover.clock.cycle parameter defines a

number of cycles to delay a keep alive ping for every hot standby Media Server.

Note: The cycle is used for secondary Media Servers and only used on initial
discovery (i.e., startup of the JSR 309 Connector).

cycle * interval = seconds to wait before pinging hot standby Media Server

Default - 1

For details on how the JSR 309 Connector Media Server Redundancy works, refer to the
Redundant Media Servers Guidelines section in the Dialogic® PowerMedia™ JSR 309

Connector Software Developer’s Guide.

83

9. Appendix C: Updating the JSR 309 Connector

The JSR 309 Connector comes as a set of JAVA library files (JAR). In the OCCAS Application

Server, the required application files are stored as part of the application server
configuration and are located in the “lib” directory of the OCCAS “DOMAIN_HOME” directory.

To update the JSR 309 Connector library, replace existing (if applicable) JAR files with a new

set in the previously referenced “lib” directory.

The JSR 309 Connector is a set of the following JAR files:

 dlgmsc.jar

 msmltypes.jar

 dlgcsmiltypes.jar

The MANIFEST.MF file has been included in the JSR 309 Connector JAR files with version

and build number. The versions of these files need to be exactly the same and should not be
mixed and matched with older or newer versions of the JAR files. In addition, the

MANIFEST.MF file describes the version of PowerMedia XMS that the JSR 309 Connector was
tested on.

In order for the new JAVA library JAR file to take effect, the application using it will have to

be stopped and restarted through the OCCAS administration page (Deployments under
Domain Structure) as shown below:

	Dialogic PowerMedia XMS JSR 309 Connector Software Release 4.1 Installation and Configuration Guide with Oracle Communications Converged Application Server
	1. JSR 309 Connector Requirements
	2. Contents of the Distribution
	Distributed Files

	3. Installation and Configuration
	Preparing the J2EE Converged Application Server
	Installing the JSR 309 Connector
	Step 1 – Installation and Configuration of JSR 309 Connector
	Configure JSR 309 Connector Required Third-Party Libraries
	Configure JSR 309 Connector Properties File
	Modify AS Startup Script

	Step 2 – Installation and Configuration of JSR 309 Connector Demo
	Configure JSR 309 Connector Demo Properties File
	Modify AS Startup Script
	Deploy JSR 309 Connector Demo Application
	Configuration of WAR File via AS Web Admin Console

	Step 3 – Proper Configuration of PowerMedia XMS
	PowerMedia XMS Web Admin Configuration
	Allowing Absolute Paths
	Installing JSR 309 Connector Demo Prompts

	Step 4 – Verification of JSR 309 Connector using Demo Application

	4. Test Servlets
	Test Servlets Overview
	Running the Test Servlets
	DlgcPlayerTest
	DlgcDtmfPromptAndCollectTest
	DlgcRecorderTest
	DlgcDtmfAsyncTest
	Conference Demos
	JMCConferenceServlet
	DlgcReferenceConferenceWithOutBCallServlet
	DialogicBridgeConference
	DlgcEarlyMediaBridgeDemo

	5. Troubleshooting
	Logging
	SIP Errors

	6. Building and Debugging Sample Demos in Eclipse IDE
	Prerequisites
	Creating Build Environment
	Building the Project
	Configuring Eclipse Project and OCCAS Deployed Application for Remote Debugging
	Eclipse Project Remote Debugging Configuration

	7. Appendix A: JSR 309 Connector Environment Setup
	Installing and Configuring the OCCAS
	Pre-Installation Setup
	JDK Setup
	OCCAS Installation
	OCCAS Configuration
	OCCAS Startup
	Firewall Configuration
	OCCAS Verification

	8. Appendix B: Redundant Media Servers Configuration
	9. Appendix C: Updating the JSR 309 Connector

